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I. INTRODUCTION 

Probably the most impressive fact about inductive learning is not that is 
occurs naturally in intelligent systems, but rather that it does not get out of 
hand. Any limited set of experiences will be consistent with an unlimited set 
of possible inductive generalizations. To give but one example, the next item 
in the sequence 1,2,4 might justifiably be 5 (increasing integers not divisible 
by 3), 8 (as in the equation a,,, =2a,, a, = l), 14 (as in a.,, = a:-- a. + 2, 
a, = 1). A (as in 1,2,4,A,B,D) or really anything. Therefore, a major issue 
concerns which of these possible inductive generalizations are generated or 
preferred by people. This issue has become particularly salient with the ad- 
vent of computer programs capable of inductive learning (e.g., see Michal- 
ski, Carbonell, & Mitchell, 1983, 1986, for recent reviews). Aside from the 
general issue of how to form useful inductive generalizations, an important 
research topic for studies of human-computer interaction is the extent to 
which humans and computer programs form compatible inductive 
generalizations. If there are general correspondences then each potentially 
can be used to inform the other. 

This paper is concerned with rule induction from preclassified examples. 
The search for constraints associated with rule induction raises the question 
of how we select among the large set of potential rules that can describe any 
particular classification or partitioning. Presumably only some of the possi- 
ble rules are natural for human beings. 

Why Look for Constraints? 
Our explicit assumption is that some rule inductions associated with parti- 
tions of entities are natural and others are awkward or unnatural. One pos- 
sibility is that naturalness is strongly context-dependent: that is, it varies 
with the specific contents of the entities under consideration. On that view, 
it simply is not possible to develop formal, universal constraints on rule 
induction, or the constraints might have to be stated at a level too general to 
be useful. A more optimistic attitude is that fairly universal constraints or 
biases on human rule inductions exist and that they might provide impor- 
tant general principles for the question of how intelligent systems structure 
their experience. 

A more specific reason for seeking constraints on inductive generaliza- 
tions concerns the compatibility between human and computer inductive 
learning. Inductive learning programs in artificial intelligence (AI) can be 
thought of as “expert systems” that can suggest new meaningful groupings 
of observations or generate descriptions of given classes of observations. If 
these new groupings or descriptions are to be useful, they must be under- 
stood and, therefore, it is helpful if the groupings are described in a way 
that is compatible with human biases or descriptive preferences (for an 
example involving practical results from automated induction of descrip- 
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tions of soybean diseases, see Michalski & Chilausky, 1980). Conversely, 
constraints derived from human data provide candidate principles for AI 
programs. Although the present studies are exploratory, they are motivated 
in part by principles derived from both AI and cognitive psychology. The 
next section describes some of these principles. 

II. CONSTRAINTS IN INDUCTIVE LEARNING 

Cognitive psychologists have generated a large body of data on classifica- 
tion learning from examples and on the difficulty of learning different types 
of rules. In rule learning experiments, the experimenter creates a stimulus 
partitioning that conforms to some prespecified rule and the data of interest 
concern the speed with which subjects converge on that rule. There has not 
been a concomitant interest in the situation where a partitioning admits of 
many possible rules and the major issue is what forms and types of rules 
typically are developed from experience. Nonetheless, if there is a close link 
between ease of learning and naturalness, then one may be able to use 
results on learning difficulty to generate candidate biases in rule induction. 
Several factors that seem to influence the inductive learning process are con- 
sidered below: 

1. Preference for Simple Rules 
It is true almost by definition that simple rules are easier to learn than com- 
plex ones. In fact the notion of simplicity and parsimony is so well engrained 
in the scientific community that one might wonder if any other constraints 
are needed. Simplicity, however, is a very elusive concept and some have 
questioned whether it can be meaningful at all, since simplicity depends on 
the particular language of description employed (see Goodman, 1972). 

Informally speaking, simplicity is the inverse of conceptual complexity, 
where complexity reflects the time expended and resource costs, i.e., “men- 
tal effort ” needed to use the rule in decision making. One problem with 
this definition is that, for the same task, mental effort may differ with prac- 
tice, background knowledge, and other contextual factors. If simplicity is 
defined only in terms of mental effort and cannot be specified in advance, 
then it becomes a dependent rather than an independent variable. For sim- 
plicity to provide a meaningful constraint on inductive learning it must be 
operationally defined. 

In one attempt to be specific about simplicity, Neisser and Weene (1962) 
posited some basic logical operations (i.e., conjunction, disjunction, nega- 
tion) and defined simplicity in terms of the number of operations needed to 
describe a partitioning. They also found that ease of learning was directly 
related to simplicity so defined. To the extent that one can specify which 
operations are basic, one can test the idea that simplicity provides a useful 
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constraint on rule induction (see also Pinker, 1979). Because simplicity can 
change with the language of descriptions employed, it is important to evalu- 
ate simplicity within a theoretical framework that specifies basic operations 
and elementary concepts. 

2. Preference for Conjunctive Rather than Disjunctive Rules 
Rosch and her associates have persuasively argued that real-world categories 
are formed to exploit clusters of correlated attributes (Mervis & Rosch, 
1981; Rosch, 1975, 1978). For example, animals with feathers are very likely 
to have wings and beaks, whereas animals with fur are very unlikely to have 
wings and beaks. In other words, correlated attributes carry information 
that permits one to go from knowledge of some attributes to predictions 
about others. An organism sensitive to these correlated or co-occurring 
attributes might find conjunctive concepts or rules more natural than dis- 
junctive concepts or rules. Another important advantage is that conjunctive 
class descriptions allow one to determine properties of an object from 
knowledge of its class membership. 

There is a fair amount of experimental evidence that conjunctive rules 
are easier to learn than disjunctive rules (Haygood & Bourne, 1965). Bourne 
(1974) has proposed that the relative difficulty of conjunctive and disjunc- 
tive rules arises from pre-experimental biases or preferences that favor con- 
junctive concepts, but results of experimental tests of this idea have either 
contradicted it (e.g., Dominowski & Wetherick, 1976) or suggested that 
biases may not be consistent over stimulus types (Reznick & Richman, 
1976). Therefore, although the preponderence of evidence suggests that 
conjunctive rules are easier than disjunctive rules, the support for this claim 
is far from universal. 

3. Sensitivity to Cue Validity 
Cue validity has long played a part in theories of perceptual categorization 
(e.g., Beach, 1964). The validity of a given cue or property for a category is 
defined as the probability that an entity is a member of a category given that 
it has that cue or property. For the special case where cue validity is equal to 
unity, a cue or feature is said to be sufficient (though it may not be neces- 
sary) for determining category membership. The basic idea is that organisms 
are sensitive to properties or cues which allow them to make correct categor- 
izations. Elio and Anderson (198 1) noted that people seemed especially sen- 
sitive to sufficient features in classification learning. As applied to rule 
induction in categorization, features entering into inductions should tend to 
be those that discriminate between categories. For example, having hollow 
bones has greater cue validity than being of a certain size, in differentiating 
birds and mammals. 
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4. Sensitivity to Category Validity 
Category validity is defined as the logical converse of cue validity, namely, 
as the probability that an entity has some feature or cue given that it belongs 
to a category (Tversky, 1977). For the special case where category validity 
of a cue is equal to unity, the cue or feature may be said to be necessary 
(though it may not be sufficient) for category membership. To see that cate- 
gory validity is not the same as cue validity, one may note that category 
validity does not take into account whether a feature or cue is possessed by 
members of alternative categories. For example, having two legs would 
have no cue validity with respect to differentiating birds from people. 
Category validity is similar to the correlated attribute principle in that it 
focuses on inferences that can be made from knowledge of category mem- 
bership. As applied to rule induction, one might speculate that features 
entering into inductions will tend to be those that are widespread within a 
category. 

5. Preference for Positive over Negative Features 
There is a substantial body of evidence suggesting that people have difficulty 
in processing negative information (e.g., Wason & Johnson-Land, 1972). In 
the Neisser and Weene (1962) framework, negative features always involve 
an extra operation which would serve to increase task complexity. One 
might expect people to prefer descriptions (rules) which minimize or do not 
involve negative features or properties. Recent studies show that this holds 
specifically in cases when subjects use a verbal problem representation. Sub- 
jects using a mental imagery strategy apparently are not affected by the 
negation (Hunt, 1983). 

These five candidate constraints do not add up to a theory of induction. 
Rather, they reveal an unsettled state of affairs. It is unclear how the 
various factors trade off against or compliment each other. A general ques- 
tion, then, is how one ought to express constraints or preferences associated 
with rule induction. Specifically, one may think of constraints as directly 
determining the result or outcomes of induction or they may act indirectly 
by being embodied in the process of rule induction. 

Process versus Product Constraints 
The majority of psychological research has been directed at constraints 
stated in terms of products or outcomes. Keil (1981) offers some cogent 
arguments and evidence for the view that one should look for domain-spe- 
cific constraints developed in terms of structures (or products) rather than 
processes. Keil takes the somewhat uneven picture on the relative difficulty 
of different types of rules as supporting the futility of looking for domain- 
general constraints. 



304 MEDIN. WATTENMAKER. AND MICHALSKI 

Although our position is compatible with Keil’s in some respects, in 
other respects it is the logical converse. We agree with Keil in that if one is 
committed to developing constraints in terms of particular structures or 
outputs, then such constraints will very likely be domain-specific. The focus 
of our present work, however, is the claim that if one is looking for domain- 
general constraints, then they should be embodied in the processing assump- 
tions of models of performance. To some extent, the distinction between 
process and output is artificial in that the two must necessarily be intimately 
linked. Pragmatically, however, there is a clear difference, The focus on 
products reflects the faith that output constraints will form a coherent pic- 
ture. This may arise because there is a many-to-one mapping between alter- 
native underlying processes and outputs or because domains limit the set of 
plausible processing mechanisms. 

In contrast, the focus on processing principles carries with it the convic- 
tion that coherence more readily emerges in terms of process constraints. 
For example, it may be possible to account for the mixed picture on the rela- 
tive difficulty of conjunctive versus disjunctive rules cited earlier in terms of 
a single underlying processing model. That is, instead of different processes 
yielding the same output, a small set of processing mechanisms may (system- 
atically) produce a variety of performances. In addition, processing con- 
straints may provide more clues for dealing with the problem of too many 
possible inductions. As an extreme, one might imagine an induction system 
that attempts to produce all possible inductions and then runs them through 
an evaluation function that selects the ones with the appropriate properties 
(those that obey the right product constraints). A contrasting system embody- 
ing processing constraints might be able to generate a tiny subset of the pos- 
sible inductions but, in an efficient and effective system, these would be just 
the desired subset. Limiting the number of inductions considered and select- 
ing the “right” ones would be accomplished in a single set of steps in terms 
of processing principles. The danger associated with this commitment to 
processing principles is that one will formulate models which are too narrow 
and task-specific. Although any small set of experiments is likely to be sus- 
ceptible to this latter criticism, we believe that our studies do illustrate the 
value of looking for processing constraints. 

One rationale for seeking such constraints is that this seems to be the 
natural way to evaluate relationships among the five candidate constraints 
that we have just discussed. Unfortunately, there is no extant psychological 
model that provides a processing account of how people provide inductive 
generalizations or rules for preclassified categories. Research on inductive 
learning in AI, however, has proposed answers to the questions we have 
been considering in the form of working computer programs. One of the 
major purposes of the present paper is to examine the extent to which the 
constraints or preferences embodied in these AI programs also act as con- 
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straints for human rule induction. That is, we will treat these programs as a 
first approximation to a psychological theory of rule induction. As will be 
seen, there are numerous parallels between candidate constraints derived 
from cognitive psychology and biases incorporated into AI programs. We 
will describe a psychological process model, referred to as the Patch model, 
that was inspired by a particular AI induction program, INDUCE. A sec- 
ond major purpose in our comparison of human and machine rule induction 
is to see if processing principles from human rule induction provide any 
clues for the enhancement of methods embodied in machine inductive learn- 
ing. 

Although there are numerous inductive learning systems (see Dietterich 
and Michalski, 1981, 1983, for a detailed review) we will primarily be con- 
cerned with one particular program, INDUCE. There are three main rea- 
sons for our focus. The first reason is that INDUCE was specifically designed 
with the criterion of human comprehensibility in mind (the rules should 
make sense or seem natural to people: see Michalski, 1980, 1983a, 1983b), 
and, therefore, it may be a good candidate for a process model. The second 
is that the stimulus materials which we employed require structured descrip- 
tions, and many AI systems do not have descriptive languages that are this 
powerful. The third reason is more pragmatic and not specific to INDUCE. 
We cannot describe all the inductive learning algorithms that have been pro- 
posed (again see Dietterich & Michalski, 1981, 1983) because illustrating our 
approach requires far more detail than otherwise might be provided. In the 
general discussion we will provide a more detailed summary of the adequacy 
of other AI induction programs as psychological models. First, however, we 
turn our attention to INDUCE. 

III. CONSTRAINTS IN THE INDUCE PROGRAM 

Michalski’s program, INDUCE, contains both processing constraints and 
product preferences. The processing constraints are primarily embodied in 
the algorithm that performs inductions and the product constraints are con- 
tained in a parameterized evaluation function that orders the rules in terms 
of their desirability. In general, the program performs a heuristic search 
through a space of candidate symbolic descriptions which are generated by 
the application of various inference rules to the initial observational state- 
ments. The following paragraphs describe INDUCE in a general way and 
the reader is referred to Michalski (1980, 1983a, 1983b) for a more detailed, 
technical presentation of INDUCE. 

To see how INDUCE works, it will be helpful to have a specific example 
in mind. Figure 1 shows the set of trains that was used in the first experiment 
(described in Section V). The trains differ in numerous properties such as 
wheel color, car shape, and load shape. The five trains on the left are said to 



306 MEDIN. WATTENMAKER, AND MICHALSKI 

be Eastbound and the five trains on the right are said to be Westbound. The 
task for INDUCE, as well as our experimental participants, is to come up 
with a rule that could be used to determine whether a train is Eastbound or 
Westbound. It should be obvious that there is a large set of potential rules 
ranging from describing the union of descriptions of individual examples to 
the most general possible assertion. A central issue is whether or not the 
forms of rules people develop are similar to those constructed by INDUCE. 

Descriptions and Rules 
The initial input to INDUCE consists of a set of observational statements 
characterizing each example. For instance, each car of the train may be de- 
scribed as being long or short, as having a particular shape, and so on. These 
elementary descriptors, attributes, functions or predicates may be nominal 
(e.g., sex), linear (e.g., length), or hierachically structured (e.g., shape, with 
values such as triangle, square, polygon, etc.). 

The descriptors used in the input data are not necessarily the final de- 
scriptors used in inductive assertions. In the process of formulating inductive 
generalizations INDUCE applies various generalization rules to develop 
more general descriptions from the initial observational statements. These 
generalization rules can be classified as either selective or constructive. 
Selective inference rules directly incorporate descriptors used in initial con- 
cept descriptions. Examples of selective rules include fuming consfanfs info 
variables (e.g., replacing “red” by “any color”), dropping conditions (as- 
suming that some property is irrelevant), and closing intervals (e.g., if entities 
have values of either four or six on some dimension, then this operation 
would transform the description to “value between 4 and 6”), creating 
internal disjunction (e.g., “value 4 or 5 or 6”), and climbing a generaliza- 
tion free for hierarchically structured variables transforming “Chicago or 
Dekalb or Peoria” into “Illinois”). Negative descriptors are not normally 
employed except in two situations. The first exception is that a negative de- 
scriptor may be used if it will allow for a more succinct expression. For 
example, given a choice between “triangle or rectangle or pentagon or 
ellipse or circle” and “not square” the latter description would be used. 
The second situation occurs when using the generalization rule called exten- 
sion against. If example A is positive and example B is negative, then the 
rule creates the negation of any property in B that is not shared by A. Such a 
negation is the most general assertion describing A and excluding B 
(Michalski, 1983a). 

Constructive generalization rules involve creating new descriptors not 
present in the original observational statements. For example, there is a 
counfing rule such that if some attribute appears a number of times, a new 
descriptor based on frequency (e.g., “two red circles”) may be created. 
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Another rule, generating chain properties, creates descriptions based on 
ordered relationships such as “first”, “middle” or “last” in a series. Other 
constructive generalization rules exploit descriptor interdependence such as 
might be present when attributes are correlated. For particular domains, the 
user may suggest additional constructive generalization rules. 

General Algorithm 
The algorithm realizes the so-called star method of induction (Michalski, 
1983a) which focuses on various single positive examples and contrasts them 
with negative examples. Although the descriptive language and generaliza- 
tion rules are important and in part are motivated by psychological consid- 
erations, the induction algorithm contains the major processing constraints 
that are of present interest. INDUCE begins with a set of descriptions of en- 
tities, then selects a target category (say, the Eastbound trains) and proceeds 
as follows. 

1. 

2. 

3. 

4. 

5. 

6. 

An example (called the “seed”) from the target (positive) category is 
randomly selected. 
The seed is then described in various alternative and general ways (this 
set is called a “star”) without contradicting (applying to) examples of 
the contrasting category. In the process of generating such candidate 
descriptions, both selective and constructive generalization rules are 
applied. Note that the descriptions produced by generalizing a single 
example can always be conjunctive. 
Descriptions on the candidate list are then evaluated according to a 
preference criterion. This criterion is set up at the beginning of the pro- 
cess to reflect the underlying learning goal. Consistency and complete- 
ness are used as general constraints. A description is consistent if it does 
not apply to any members of the contrast set (i.e., it has no counter- 
example). This is equivalent to cue validity being equal to unity, if the 
entire description is treated as a single cue. A description is complete if 
it applies to all members of the target category. This is equivalent to a 
description having a category validity of unity. Descriptions that are 
consistent and complete represent alternative solutions and are saved. 
Alternative descriptions are ordered according to the preference criterion 
and the best description is selected. 
If the description covers all the positive examples, then a solution has 
been found and the process stops. Otherwise, all positive examples 
covered (explained) by it are removed from the original set, a new seed 
is selected from the remaining examples, and the process repeats. 
The solution is either a single conjunctive description or a disjunction 
of such descriptions (which happens when the process repeats more 
than once). Thus, INDUCE has an inherent bias toward conjunctive 
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descriptions; when it cannot find one it creates a disjunctive descrip- 
tion. The solution is consistent and optimal with respect to the prefer- 
ence criterion. 

The Preference Criterion 
As an example of how the algorithm might work, consider again the trains 
in Figure 1. INDUCE might pick one of the Westbound trains having two 
cars as a seed and note that the rule “West trains have two cars” is consis- 
tent (there are no counter-examples) but not complete. This rule may be 
saved (see Step 5 in the algorithm) and attention would shift to (one of) the 
two trains not covered by the rule. For the reduced set, the rule “West trains 
have a jagged top” would be generated as both complete and consistent. 
The two rules generated would be combined to form the rule “West trains 
have two cars or a jagged top” which is consistent and complete for the 
entire set of trains. The quality of any particular description is evaluated 
according to a combination of criteria defined by the user. The preference 
criterion provides a set of elementary preferences (product constraints) that 
apply to the rules generated by the algorithm. Elementary preferences 
include, for example, consistency, completeness, and a combined measure 
of simplicity and the “fit” between observations and descriptions. The mea- 
sure of simplicity may involve costs of measuring values, the memory require- 
ments, and the number of descriptors and operators used in the generated 
inductive assertion. Simplicity encourages short, general, and easily com- 
puted descriptions. The notion of fit is designed to avoid overly general 
rules and is to a large extent in opposition to simplicity. Fit refers to how 
well an inductive assertion matches the examples of the target set and is 
defined as the amount of uncertainty that any given description satisfying 
the inductive assertion corresponds to an actual example. For example, if 
the target set contained a small red triangle and a large red triangle and the 
contrast set consisted of a blue circle and a green triangle, then the solution 
“red and triangle” would have a better fit (and be less general) than the 
assertion “red.” These elementary criteria are combined into one measure 
by the lexicographic evaluation function (Michalski, 1983a). We will not de- 
scribe the preference function in greater detail other than to note that it allows 
multiple evaluation criteria and is formally similar to Tversky’s (1972) elim- 
ination by aspects model of choice behavior. 

The preference criterion is fairly flexible. For example, by appropriate 
“weighting” of simplicity and fit one can produce either characteristic de- 
scriptions, which focus on properties common to a class, or discriminant 
descriptions, which focus on properties necessary to differentiate between 
classes. 

The parallels between the constraints drawn from cognitive psychology 
and those associated with INDUCE are quite close. INDUCE has a notion 
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of simplicity, embodies a bias favoring conjunctive descriptions, and gener- 
ally avoids negative features. The issue of cue validity versus category valid- 
ity corresponds to the difference between discriminant and characteristic 
descriptions. INDUCE embodies certain processing constraints and param- 
eterizes product constraints in terms of its preference criterion function. 
Again we shall pay more attention to the processing constraints, but the 
product constraints are also of interest in that it may be possible to convert 
them into processing constraints in a modified model.’ 

The preceding description of INDUCE is somewhat oversimplified. By 
altering the preference criterion, INDUCE can execute a variety of induc- 
tive processes. INDUCE also allows one to control the process speed by a 
“search scope” parameter (called MAXSTAR). In this sense INDUCE is 
not so much a specific model of induction as it is a set of potential proce- 
dures that can be tailored according to the task demands or a user’s goals. 
Indeed, the general methodology has been instantiated in a variety of ways 
(e.g., Michalski, Mozetic, Hong, & Lavrac, 1986). For present purposes, 
however, we will operate at the level of the general algorithm described here 
because it provides insight into one major aspect of human rule induction in 
our experiments. 

IV. GENERAL COMPARISON AND EVALUATION STRATEGY 

The preceding analysis of constraints on inductive inference suggests a 
research strategy. First of all, evidence is needed bearing on the validity and 
importance of these candidate constraints on rule induction in classifica- 
tion. If more than one factor emerges as important, then followup studies 
can be targeted at the relative significance of each factor. A related question 
will be how general any constraints prove to be across tasks. 

In the present studies the program INDUCE is used as a potential model 
of human inductive learning. To the extent that INDUCE captures people’s 
inferences, it will receive support as a psychological model and will provide 
a framework for evaluating the relative importance of different factors 
influencing the naturalness of inductions. If the processes associated with 

I The goals of Al and cognitive psychology do not always coincide perfectly. The prefer- 
ence function associated with INDUCE gives the program important flexibility that allows it to 
be tailored to specific applications. In addition, there is no particular reason to saddle an 
induction program with exactly the set of human limitations. For example, in a fixed amount 
of time a program should be able to consider a larger set of alternative rules than people can. 
Correspondingly, there may be a greater need for a program to select from or edit candidate 
rules. We are not so committed to a processing account of human rule induction that we think 
that people never edit or select among alternative rules. There is a need to study how people 
evaluate candidate rule inductions. In our present experimental circumstances, however, the 
main challenge is to provide an account of how people come up with at least one rule. 
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people’s development of inductive generalizations show systematic differ- 
ences from INDUCE, then these differences can be used both to modify 
INDUCE (if the differences involve factors that may provide useful con- 
straints on induction or increase comprehensibility) and to develop psycho- 
logical models of people’s inductive generalizations (in the event that the 
differences are that people depart from what is useful or optimal). 

The above comments are both more general and more vague than they 
ideally might be. We think there are at least three issues that bear closer 
examination: (1) fixing a descriptive language, (2) the meaning of treating 
an AI program as a “psychological model,” and (3) determining the appro- 
priate strategy for making claims about generality. Each of these issues will 
be discussed in turn, although a more complete discussion of the third issue 
is left until the general discussion. 

Fixing a Descriptive Language 
Many people have argued that the central issue in induction is the set of 
processes that determine the basic units of analysis and the associated de- 
scriptive language. We do not attempt to address this issue in this paper. 
Nonetheless, the experiments can be seen as a test of the adequacy of de- 
scriptive language associated with INDUCE. As noted by Dietterich and 
Michalski (1981, 1983), several AI induction programs do not incorporate 
structural descriptions. One of our goals is to see if people’s rule inductions 
employ descriptions in a manner not captured by INDUCE. 

One might argue that unless the descriptive language is fixed the whole 
issue of the form of rules (conjunctive versus disjunctive) becomes irrele- 
vant. The idea is that the same concept can be, for example, either conjunc- 
tive or disjunctive, depending on the feature set chosen; for example, the 
concept of “cousin” could be stated either as “the child of a sibling” or 
“the son or daughter of a brother or sister.” We believe this argument is 
misplaced, because it implies that the feature set is chosen after the rule 
induction has been performed. It seems far more likely that feature set se- 
lection is either prior to or simultaneous with rule induction. Indeed, some 
set of features may be selected because it permits a conjunctive rule rather 
than vice versa (we see evidence for this in our studies, especially in 
Experiments 2 and 3). 

AI Programs as Psychological Models 
It should be obvious that there are a variety of criteria that could be used to 
evaluate programs like INDUCE. First of all, INDUCE would be a power- 
ful psychological model if it produced all and only those rules given by 
human subjects. Alternatively, given the flexibility associated with the eval- 
uation function it might be that people’s rules were a proper subset of the 
rules given by INDUCE. Still another useful result would be that the subset 
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of people’s rules that other people rated as “good” rules would be pro- 
duced by INDUCE. Of course, rules can be analyzed more abstractly and it 
might be important to establish whether or not the types of rules given by 
people and an AI program match. 

A second approach, which we favor, is to see if there are general cor- 
respondences between the algorithm associated with an AI program and the 
processes that give rise to human rule inductions. Presumably the particular 
rules given contain some hints about underlying processes but, as we shall 
see, product or outcome constraints may not hold across tasks where the 
same general processes appear to be operating. It is difficult to be precise 
about the level of detail at which one ought to compare an algorithm with a 
psychological process model, but the present studies show that it is feasible 
to abstract both high level similarities and some important differences. 

Determining Generality 
Although we will later consider the issue of generality in some detail, it is 
important to state some disclaimers from the outset. First of all, it follows 
from what we have just said that one otlght to look for generality in terms 
of processing rather than product constraints. Secondly, certain types of 
generalizations are clearly inappropriate. For example, certain constructive 
generalization rules are very likely to be domain-specific. Selective general- 
ization rules such as climbing a generalization free are likely to be used more 
often (see Winston, 1975). 

A second boundary condition on generality is that in the absence of 
information about the appropriate descriptive language and without at least 
ballpark notions about a process model, speculations about generality are 
probably meaningless. So, for example, we make no claims that a process 
model for the induction of classification rules will embody the same con- 
straints as a process model for the induction of syntactic rules of English 
(but see Berwick, 1986, and Bowerman, in press). On the other hand, we 
will present evidence that some of the processing biases associated with our 
highly artificial experimental situation extend to more realistic and prac- 
tically important diagnostic classification tasks. 

V. EXPERIMENTAL COMPARISONS 
EXPERIMENT 1 

The first experiment was exploratory and employed a combination of class- 
ification construction (sorting) and rule induction tasks. The stimulus 
materials consisted of the 10 trains shown in Figure 1. Participants were 
asked to perform four tasks. First, they were to arrange the trains into any 
number of groups (classes) in a way that made sense to them. Second, they 
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were asked to describe the basis for their classifications. Then participants 
were asked to perform two additional classification construction tasks. The 
first had the constraint that there should be exactly two categories of equal 
size (of five members each). The second was identical to the initial uncon- 
strained task except that participants were told that they could employ an 
“else” category for trains that did not fit any of their preferred groupings. 
Finally, in the fourth task, participants were told that the 5 trains on the left 
side of Figure 1 were Eastbound, that the trains on the right side were West- 
bound, and that their task was to come up with a rule that could be used to 
decide if a new train was East- or Westbound. Thus, the first three tasks 
dealt with classification construction and the fourth dealt with learning 
rules from examples. 

There were several objectives in this initial study. The category con- 
struction tasks were given in order to: (1) Determine which particular prop- 
erties would be salient for people, (2) See whether or not people would 
spontaneously construct the categories to be used in the later rule induction 
task, and (3) Provide people with some familiarity with the stimuli before 
the rule induction task. In addition, the experiment provided a data base of 
descriptions that could be used to evaluate the adequacy of the generaliza- 
tion rules associated with INDUCE. To sharpen this comparison, half of 
the participants were told which features were relevant (the same ones as 
used in the initial input to INDUCE) and half were not. If INDUCE repre- 
sents a plausible model of human rule inductions, then processing con- 
straints associated with INDUCE will be reflected in the human data. 

Method 

Subjects. The subjects were 64 undergraduates (male and female) attend- r 
ing the University of Illinois, who were paid for their participation in the 
experimental session which lasted about one hour. The participants were 
randomly assigned to either the Standard group or the Informed group. 
Because of a procedural error, the data from one of the participants in the 
Informed condition could not be used. 

Stimuli. The stimulus materials consisted of the drawings of 10 trains 
shown in Figure 1. The trains were mounted on 7.6 cm by 12.7 cm index 
cards. As may be seen in Figure 1, the trains could differ in the number and 
shape of cars, in their tops and loads, and in the number and color of their 
wheels. 

Procedure. The experimental procedure consisted of the above mentioned 
set of classification construction tasks followed by a rule induction task. 
Participants were tested individually. Details of the procedure follow. 
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1. Free Classification. For the initial task, participants were asked to 
carefully look over the trains and then to put them into groups in a way that 
made sense to them. After this free classification was completed, each par- 
ticipant was asked for a justification of his or her groupings. 

2. Constrained Classification Construction. For the next task, partici- 
pants were asked to put the trains into two equal-sized groups in a way that 
made sense. Then participants were asked again to justify their partition- 
ings. 

3. Free Classification with ‘Else” Category. The last partitioning task 
was identical to the first, except that participants were told that they could 
have a “junk” category for trains that did not fit in with other groups. 

4. Rule-Induction. For the rule induction task, participants were pre- 
sented with the two groups of trains corresponding to the left and right half 
of Figure 1 and told that one group was Eastbound and the other West- 
bound. They were told that their task was to come up with a rule that could 
be used to decide if a train was East- or Westbound. Participants perform- 
ing these tasks were divided into the Standard and the Informed group. 

Participants in the Standard group were not presented with any descrip- 
tion of the trains. Participants in the Informed group were told at the start 
of the experiment that the following set of attributes was relevant: shape of 
cars, number of cars, length of cars, number of loads, shape of loads, type 
of car top (open or closed), number of wheels, and color of wheels (white or 
black). 

Results 
The results will be presented separately for each of the sortings and the rule 
induction test. The data on category construction mainly are relevant to the 
issue of the adequacy of the descriptive language associated with INDUCE 
and they will only be described briefly.2 The more general reader may wish 
to skip to the data on East-West rules. 

Sorting. In the free classification task most of the participants con- 
structed groups of trains on the basis of a single property although a signifi- 
cant minority used a conjunction of properties. No one described their 
sorting as involving a disjunction of properties. Of the partitionings based 
on a single property, number of curs was the predominant basis for classifi- 
cation, accounting for about three-fourths of the unidimensional group- 
ings. There were few, if any, differences between the Standard and the 

’ A more detailed description of these data is available upon request. 
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Informed condition. The possible exception is that in partitions based on a 
conjunction of properties, six persons in the Standard condition but only 
one in the Informed condition used some combination of car position (first, 
middle, last) with another property. Car position was not given as a relevant 
dimension to participants in the Informed condition. The INDUCE pro- 
gram was not given car position as a descriptor but it could produce it as a 
descriptor using the Generating Chain Properties Rule. Finally, none of the 
descriptions involved negative properties or attributes. 

When participants were asked to sort the trains into equal-sized groups, 
they continued to employ single properties or conjunctions of properties. 
Again, there were no obvious differences between the Standard and Informed 
conditions. Color of engine wheels was the most common basis for sorting 
in both groups. The presence or absence of a particular shape (e.g., rect- 
angles) was the next most popular strategy among people using a single 
property. One participant in each condition sorted on the basis of whether 
or not the loads on a train were all different. This strategy would be cap- 
tured by constructive generalization rules in INDUCE. Slightly more than a 
fourth of the participants used a combination of properties. For example, 
the partition might be defined in terms of whether or not there was a circle 
load in the last car. Finally, one participant in the Standard condition used a 
disjunctive description. Negative properties were not mentioned except 
where an entire category was defined by exclusion from the alternative cate- 
gory. No participant sorted the trains in a manner corresponding to East- 
bound and Westbound categories in Figure 1. 

Almost every participant used a different classification principle when 
they were allowed to employ a miscellaneous category from the one they 
used on the initial free classification. In addition, every participant put at 
least one train into the else category. Both of these results probably arise 
from implicit task demands rather than some intrinsic property associated 
with being able to use a junk category. One major change which does not 
appear to be a function of implicit expectations is that the predominant basis 
for sorting shifted from being based on a single property to a combination 
of properties. The increased use of conjunctions of properties was associated 
with an increased variety of property combinations. For example, partici- 
pants used conjunctions of load shapes, car shapes, and load shapes in same 
versus adjacent cars. Descriptions involving conjunctions of shape are not 
incorporated into current versions of INDUCE. Car position was used by 
more participants in the Standard condition (8) than in the Informed condi- 
tion (2). No descriptions involved negative properties and no one employed 
a disjunctive description. 

East- West Rule. Of greatest interest is performance on the rule induction 
task. The results are summarized in Table 1. 
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TABLE 1 

Breakdown of Solutions to Rule Induction Task in Experiment 1. 

Solution Type Stondord Method Informed Method 

Simple Property 

Number of Different Loads 

(East: 3 or more different loods) 

Conjunction of Properties 

Positive Features only 

(e.g., East: triangle lood ond 

3 or more loaded cars) 

2 2 

2 2 

With Negative Features 

(e.g., East: 3 or more cars and 

triangle load and not iogged 

car top) 

8 7 

Conjunction Totol 10 9 

Disjunction of Properties 

Simple (e.g., West: two 

cars or jogged top) 

Disjunction of Conjunction Positive 

properties only (e.g., 2 cars or long 

cars and 2 white wheels) 

12 5 

1 9 

4 1 Negotive properties included (e.g., 

East: at least 1 block wheel on 

engine and not 3 circular loads or 

(diamond shape load and not black 

wheels) 

Disjunction Total 17 15 

Mixed Types (e.g., East: 1 2 

conjunctive: West: disjunctive) 

Other (e.g., portial rules, 2 3 

descriptions of the various troins) 

Total People 32 31 

The numbers in the table refer to the number of participants giving o particular type of 
rule. 

The task proved to be quite difficult. Two people in each condition dis- 
covered a simple classifier based on the number of different loads (East 
trams have three or more different loads). About a third of the participants 
employed conjunctions of properties. A large majority of conjunctive rules 
made use of negative properties. About half of the participants used a dis- 
junctive description, the most popular of which was the simple rule that 
Westbound trains have two cars or a jagged top. Many of the disjunctive 
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descriptions, however, were fairly elaborate and involved conjunctions of 
properties as part of the disjunctive rule. When negative properties were 
part of these complex disjunctions, they usually (but not always) were asso- 
ciated with a part involving a conjunction of properties. Finally, a few partic- 
ipants were unable to come up with rules and either gave partial rules or 
detailed descriptions of particular trains. Three participants in the Standard 
condition and four in the Informed condition gave rules that did not per- 
fectly partition the trains. (See footnote 2.) 

Overall, the results are generally consistent with INDUCE. The one 
exception is that people tended to begin with rules that had counter- 
examples (e.g., three or more cars) and then eliminate the counterexamples 
by using negative properties (as in the rule, East: three or more cars and not 
a jagged top). INDUCE does specialize overly general rules but not by ne- 
gating properties of contrasting categories. As will be seen, this pattern is 
consistent with the Patch model for rule induction to be described next. 

Theoretical Analysis 

The Patch Modelfor Rule Induction. It is convenient to characterize per- 
formance in terms of consistency and completeness. Recall that consistency 
refers to descriptions that have no counterexamples but may not cover all 
known members of a category, whereas completeness refers to descriptions 
that cover all members of a category but may have counterexamples (i.e., 
apply to members of alternative categories). Current versions of INDUCE 
look for consistent and complete descriptions (“candidate hypotheses”) but 
are influenced more by consistency than completeness. The data from 
human subjects are best accounted for by the idea that completeness may be 
at least as important as consistency in the initial phases of rule formulation. 
Therefore, not only is it the case that consistent rules are modified to make 
them complete but also complete rules are modified to make them consis- 
tent. 

In order to explain the observed pattern of results we developed a process 
model for rule induction which we call the Patch model. The Patch model is 
similar in spirit to INDUCE, although the processing assumptions are less 
formal and patch does not exist as a computer program. The model has 
been named the Patch model to capture people’s propensity to patch up 
rather than discard partially correct rules. The basic processing assumptions 
are as follows: People focus on one category and begin by looking for a 
descriptor that spans the positive set and does not apply to any counter- 
example. If one is found, then a simple rule can be generated. If no single 
descriptor works, because there are counterexamples, then one of two strat- 
egies may be applied. If there are numerous counterexamples, then people 
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may look for combinations of properties (e.g., “X and Y”) that span the set 
but do not generate counterexamples. If there are only a few counterexam- 
pies, then people may attempt to eliminate them by negating properties of 
the counterexamples not present in the positive set. For example, a person 
may notice that all Eastbound trains have a triangle load but that two West- 
bound trains also do. This description is complete but not consistent. They 
might then look for combinations of properties that apply to the East but 
not the West trains. For example they might consider the rule “triangle load 
in nonlast car,” but that rule would still have a counterexample. Next a per- 
son might consider properties true of these two Westbound trains that are 
not shared by the East trains. For example, they might notice that the two 
West train counterexamples have a long car with two white wheels and then 
generate the rule “Eastbound trains have a triangle load and not long cars 
with two white wheels.” We will refer to this type of rule as an “opportu- 
nistic conjunction.” 

The other main possibility is that a descriptor will be found that has no 
counterexamples but fails to span the positive set. In that event people form 
a disjunction using the initial descriptor and then confine attention to the 
reduced positive set and the contrast set. For example, they might notice 
that only Westbound trains have two cars, and then focus on differences 
between the remaining two Westbound trains and the Eastbound trains. 
They might notice that the remaining West trains both have jagged tops and 
generate the rule “Westbound trains have two cars or a jagged top.” This 
part of the process model is functionally equivalent to INDUCE and the 
above rule is one of those that INDUCE actually discovers. We will refer to 
this type of rule as an “opportunistic disjunction.” 

This account seems quite consistent with the present results. The descrip- 
tor, number of different loads, was apparently not very salient (it would 
involve a constructive rule for INDUCE) and few participants found the sim- 
ple rule based on it. As judged by the initial free sorting, number of cars was 
quite salient and many people found the simple disjunction, two cars or jag- 
ged top. According to the Patch model, negative descriptors (e.g., not jag- 
ged top) should be part of conjunctions and not part of disjunctions. This 
held for 17 of the 20 cases where negative descriptors were used. The three 
exceptions seem to be cases where the reference (positive) set and the con- 
trast (counterexample) set shifted at some point during the rule search. Two 
exceptions were of the form “not triangle or triangle and. . . ” and the third 
was “not dark engine wheels or dark engine wheels and. . . . ” In this model 
the relative number of disjunctive and conjunctive rules would depend on 
the exact structure of the trains and the salience of the associated descrip- 
tors. In general, however, because people are assumed to initially focus on 
properties that members of the positive set have in common, conjunctive 
rules are likely to result. 
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Relation to INDUCE. In general the people’s rules were quite similar to 
those produced by INDUCE. Both INDUCE and many participants appeared 
to discover consistent but not complete descriptors and then confine atten- 
tion to the reduced positive set and the contrast set. This would produce dis- 
junctive rules where one or more parts of the disjunction might consist of a 
conjunction of descriptors (see footnote 2). The descriptors in the rules were 
either consistent with the original descriptions given to INDUCE or could 
be readily produced by constructive generalization rules. The largest dif- 
ference between solutions given by people and by INDUCE is that a fair 
number of people appeared to find descriptors that were complete but not 
consistent and then remove the inconsistencies by forming opportunistic 
conjunctions involving negation of properties. The current implementations 
of INDUCE focus on a list of consistent (but not necessarily complete) de- 
scriptions but do not allot similar attention to complete (but not consistent) 
descriptions.’ 

Discussion 
The rule inductions were consistent with at least some of the biases outlined 
in the introduction. The partitionings were predominately either on the 
basis of a single property or on a conjunction of properties. This is con- 
sistent with the principles of simplicity, category validity, and a preference 
for conjunctions over disjunctions. The descriptions of these partitionings 
did not involve negative properties. The Informed group did not confine 
itself to the original list of properties but their new descriptors were con- 
sistent with the constructive generalization rules associated with INDUCE. 
There was no evidence that the descriptive language associated with IN- 
DUCE is insufficiently powerful to capture people’s rule statements for this 
problem. 

The main data are from the rule induction task and they manifested both 
disjunctions and negative properties. The negative properties almost always 
were part of conjunctive descriptions and fit quite well with the Patch 
model that assumes that when people find a descriptor that spans a set but is 
consistent with some members in the contrast set, they attempt to eliminate 
these counterexamples by developing a rule based on negating their proper- 
ties. In addition to the “opportunistic conjunctions,” “opportunistic dis- 
junctions” arise when a salient descriptor has no counterexamples but fails 
to span the positive set. INDUCE does not develop “opportunistic conjunc- 
tions” because current versions of INDUCE do not have an intermediate 
stage where complete but not consistent solutions are saved. Although in 

’ Actually, there is a current version of INDUCE which does form opportunistic conjunc- 

tions that grew out of this research project. For our purposes it will be convenient to describe 
our results in terms of the Patch model and earlier versions of INDUCE. 
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principle INDUCE could be modified along these lines, for present pur- 
poses it will be most convenient to describe our results both in terms of IN- 
DUCE and the Patch model. 

EXPERIMENT 2 

Although the first experiment was useful by being complicated enough to 
give INDUCE a serious test, the study did not provide any strong contrasts 
among alternative constraint principles. The second experiment was con- 
cerned only with rule induction and it included a contrast between the pre- 
dictions of Patch (and INDUCE) and AI induction programs that develop 
discrimination nets ordered by cue validity. The experiment was designed 
specifically to pit conjunction and category validity against disjunction and 
cue validity. The stimuli were simplified trains shown in Figure 2. The 
experimental task was to come up with a basis for determining whether a 
train was Eastbound or Westbound. As in the first experiment, there are 
many possible inductive generalizations consistent with Figure 2, and the 
main question is which of these people typically generate. We were particu- 
larly interested in the relative preponderance of conjunctive and disjunctive 
rules because the alternative processing algorithms make different predic- 
tions about the rules likely to be generated. Note that Eastbound trains 
can be described either by the rule “long car and triangle load in car” or by 
the rule “open car or white wheels on car”. The conjunctive rule combines 
two properties each having high category validity and lower cue validity and 
the disjunctive rule combines two properties each high in cue validity and 
lower in category validity. In terms of the number of descriptors and opera- 
tors needed the two types of rules are equally simple but INDUCE and 
Patch predict that conjunctive solutions will be more frequent than disjunc- 
tive solutions. Note that this prediction holds for the present set of stimulus 
materials. Indeed, in the first experiment there were more disjunctive rules 
given than conjunctive rules. Although the various train properties are not 
counterbalanced across participants, it would be hard to explain rule 
preferences in terms of the salience of stimulus dimensions. For example, if 
car length and load type were salient it might produce a bias for conjunctive 
rules involving Eastbound trains but it also ought to produce a correspond- 
ing bias for disjunctive rules (West = short car or circle load) involving West- 
bound trains. 

This prediction of a bias toward rule constituents that have high category 
validity is not a property of all inductive learning algorithms. For example, 
one might imagine a process model which initially computes the cue validity 
of each descriptor, orders descriptors first by cue validity and secondly by 
category validity, and then develops rules by going down the list of descrip- 
tors until a rule is created which is consistent and complete. Whenever no 
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single descriptor was both consistent and complete, disjunctive rules would 
be produced. A related algorithm would determine the information value 
(rather than the cue validity) of candidate test properties and develop a dis- 
crimination net with the most informative test occupying each node in the 
network. This is the procedure embodied in the ID3 technique of Quinlan 
(1975, 1979). In the present task, the consistent-but-not-complete and com- 
plete-but-not-consistent descriptors are mirror images of each other, so 
there is no reason to expect a preference for one type of rule over the other, 
according to Quinlan’s framework. 

EAST WEST 

Figure 2. The two groups of trains, Eastbound and Westbound, presented to subjects in 

Experiment 2. 
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Method 

Subjects. The subjects were 66 male and female undergraduates attend- 
ing the University of Illinois who participated in this experiment in partial 
fulfillment of course requirements in introductory psychology. Participants 
were run in groups of 10 to 15 and the experiment lasted about 10 minutes. 

Stimuli. The stimulus materials consisted of six trains placed on a single 
sheet of paper as shown in Figure 2. The trains differed from each other in 
color of car wheels, car loads, car length, car top, engine door and window 
color, and engine wheel color. A given property either was true of all 
members of one class but had counterexamples in the contrast category, or 
was true of only some members of one class but had no counterexamples. 
These two types of properties can be thought of as maximizing category 
validity and cue validity, respectively. 

Procedures. Participants were given the sheet of six trains and their East- 
West designation and asked to examine them. They were told to come up 
with a basis for classification that could be used to predict whether a new 
train would be Eastbound or Westbound and that, at a minimum, the basis 
for classification should properly classify the six trains on the sheet. 

Results 
We first present some preliminary information concerning performance. 
There was some ambiguity as to whether a basis for classifying both sets of 
trains was needed or whether one set could be defined by exclusion. Out of 
66 participants, three gave a criterion characterizing only one of the sets. 
The remaining 63 people provided some basis for classifying each set, but 
there is reason to believe that the primary focus was on Eastbound trains. In 
scoring descriptions or rules for whether or not they could be used to suc- 
cessfully classify the trains, one finds that for 17 participants the Eastbound 
classification principle was adequate but the Westbound one incomplete, 
whereas for only 3 participants the Westbound principle was adequate and 
the Eastbound incomplete. For 7 participants both the East and West class- 
ification principles were incomplete. Also, the instructions did not spe- 
cifically ask for a statement of a decision rule and a significant number of 
people, 27, only provided a list of descriptors that might be useful in classi- 
fying trains. 

The main results reveal a very strong preference for conjunctive rules. 
Since it was possible for people to give different forms of classification rules 
for the East and West sets, the details supporting this generalization are a 
little complicated. Altogether, 34 people gave a conjunctive rule for East 
trains, and of these, 20 also gave a conjunctive rule for West trains, 7 gave a 
disjunctive rule for West trains, and 7 simply gave a description of West 
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trains but no rule that could be used to classify the trains. One person gave a 
disjunctive rule for both East and West trains and three people gave a dis- 
junctive rule for one set (2 West, 1 East) and did not provide a basis for 
classifying the alternative set. Two people gave both a conjunctive and dis- 
junctive rule for East Trains. As a whole, then, the rule statements showed a 
strong bias for conjunctive over disjunctive rules. 

A further breakdown of classification principles offered by participants 
is shown in Table 2. Conjunctive rules predominate over disjunctive rules. 
More than the minimum information necessary to classify the trains was 
contained in 21 of the 57 conjunctive rules. For example, a typical East rule 
was “long cars and triangle load and black rectangles on engine.” This im- 
plies that the people were not focussing exclusively on discriminant descrip- 
tions. Only two rule statements mentioned negative features and both of 
those cases appear to embody the Extension Against principle (e.g., from 
the rule West: circle or short developing the rule, East: not circle and not 
short). 

The descriptions also seem consistent with a conjunctive bias or at least a 
preference for category validity over cue validity. A very large majority of 
the descriptions mentioned properties that members of a set had in common 
(maximizing individual property category validity) compared with those 
possessed by some members of a set that were not present in the contrast set 
(maximizing individual property cue validity). 

These results cannot be explained simply in terms of component salience. 
Although there is some evidence that people tended to use rules based on car 
length and load type, the dimensions employed in rules varied with whether 

TABLE 2 

Bases for Classification Provided by Participants in Experiment 2. 

Rule East West 

Conjunctive 

Simple 

Redundant 

Disjunctive 

Both 

Description 

Common Properties 

Distinctive Properties 

Common and Distinctive 

Properties 

17(2) 19(4) 

17 4 

0 B(1) 
2 0 

2ow 24(17) 

4 3(l) 

7(l) 

2 1 

The numbers refer to the number of participants for a given classification basis. The 
numbers in parentheses are the number of descriptions that would not successfully classify 
the trains. 
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the trains were East or West. Overall, 93% of the East rules mentioned car 
length or load type but only 27% of the West rules mentioned car length or 
load type. It appears that the form of the rule, conjunctive versus disjunc- 
tive, influenced performance much more than the salience of component 
properties. 

Discussion 
The main results of this experiment are in terms of both descriptions and 
rule statements, and they form a coherent picture. Although both rules were 
equally complex in terms of number of descriptors and operators, people 
showed a strong bias for conjunctive rather than disjunctive rules. The com- 
mon properties entering into conjunctions maximize component category 
validity (probability of the property given the category) in contrast with the 
discriminative properties of disjunctive rules which maximize component 
cue validity (probability of the category given the property), For the pro- 
tocols giving descriptions rather than rules there was a corresponding bias 
for common over distinctive properties. 

This bias for conjunctive rules and common properties is consistent with 
the Patch model outlined earlier and with INDUCE. This bias arises from 
the assumption that the first stage in rule induction involves generating a 
description of properties that members of a set have in common and then 
refining it to exclude counterexamples. For the trains in Figure 2, the con- 
junction of two descriptors (e.g., dark wheels, closed top) has no counter- 
examples and a simple conjunctive rule can be discovered. The task of finding 
common properties should have been and apparently was easier than in the 
first experiment because fewer, less complex trains were employed. The 
results are inconsistent with the idea that properties are ordered by cue 
validity alone or information value alone and then developed into rules (by, 
for example, generating a discrimination net). Ordering by cue validity pre- 
dicts a bias for disjunctive rules and ordering by information value predicts 
no bias. 

According to the Patch model, the bias toward conjunctive rules involv- 
ing affirmative properties is a byproduct of the underlying processing mech- 
anisms. By making other properties of the trains salient, one ought to be 
able to push rules in the direction of opportunistic conjunctions and dis- 
junctions. For example, if a single descriptor is complete but has a counter- 
example and the counter-example has a distinct, salient property, then one 
ought to see opportunistic conjunctions based on negating that property. 
We gave an additional 22 subjects the rule induction task involving the 
trains in Figure 2 but we added a smokestack to either the West train that 
had a triangle load (for half the subjects) or to the West train that had a long 
car. This change led to 11 simple or redundant conjunctive rules and, more 
importantly, 6 opportunistic conjunctive rules of the form “triangle load 
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and not smokestack” or “long car and not smokestack.” There were also 
two rules of the form “circle load or smokestack” which may represent 
opportunistic disjunctions. The data from these additional subjects is, 
therefore, consistent with the Patch model. 

The results of this experiment also show that rule induction is guided by 
more than simplicity or parsimony. Many of the rules contained more than 
the minimum number of necessary descriptors, which, in the framework of 
INDUCE, suggests that “fit” also influences inductive generalizations. 
These observations are also in accord with a bias toward characteristic 
descriptions over discriminant descriptions. This preference for fit to data 
(or, in other words, avoiding excessive generalizations) comes at the cost of 
simplicity but it has the benefit, in the case of conjunctive rules, that the 
descriptions list the inferences about properties that can be reliably drawn 
from knowledge of category membership. 

EXPERIMENT 3 

The third experiment used the same trains as the second and also was con- 
cerned with rule induction. The difference was that the examples were not 
presented all at once, but sequentially one by one. The examples were trains 
and participants had to learn to classify each of the six trains as East- or 
Westbound. At the end of learning, participants were asked for their basis 
of classification (i.e., the rules they had learned). The main question con- 
cerns how the rules will change under this sequential presentation proce- 
dure, which places more demands on memory than the simultaneous 
presentation used in Experiment 2. 

In terms of our Patch model for inductive generalization the learning 
procedure might make it more difficult to discover properties that are com- 
plete or consistent. If a person finds a property that is complete but not con- 
sistent (e.g., long for East trains has one counterexample), they might treat 
the counterexample as an exception and eliminate it by describing it in 
detail. This might lead to a rule like “Trains with long cars are Eastbound 
except if they have a circle load.” This would be an instance of what we 
have been referring to as an opportunistic conjunction. Another possibility 
is that a descriptor might be found which is consistent but not complete (e.g., 
the descriptor, “Westbound trains are short”). In that event, attention 
should focus on the remaining West train and one might see an oppor- 
tunistic disjunctive rule like “Westbound trains are shorf or long with a cir- 
cular load. Note that such a rule is different from the rule “Westbound 
trains are short or have a circular load” because it specifically combines cir- 
cular load with long car. The Patch model, then, is consistent with disjunc- 
tive rules, but for the trains in Figure 2 at least one part of the disjunction 
should contain a conjunctive description. 
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Method 

Subjecfs. The subjects were 20 male and female undergraduates attend- 
ing Emory University who participated in this experiment in partial fulfill- 
ment of course requirements in introductory psychology. 

Stimuli. The stimulus materials consisted of the six trains shown in 
Figure 2 which were individually mounted on index cards. The stimuli were 
otherwise identical to those used in Experiment 2. For half the subjects the 
trains on the left side of Figure 2 were in the East category and the trains on 
the right side were in the West category, and for the other half of the sub- 
jects this assignment was reversed. 

Procedures. Each participant was tested individually. They were told 
that they would see trains differing in a number of properties and that their 
task was to learn to correctly classify the trains as Eastbound or Westbound. 
The individual cards were presented in a random order, subject to the con- 
straints that a given train was never presented twice in a row and a given 
category never appeared more than four times in a row. 

The experimenter first ran through the set of six trains twice and gave the 
correct category assignment as each card was presented. Thereafter the 
cards continued to be presented one at a time and the subject said whether 
they thought the train was in the East or West category and then was told 
whether they were correct or incorrect. There was a brief pause between 
every two runs and training continued until a participant was correct for 
each tram in a block of two such runs. When the training criterion was met, 
the experimenter asked the subject to explain their criterion for classifying 
the trains as East or West. In addition to this general question, participants 
were specifically asked if they focused on one of the two categories. 

Results 
Every participant met the learning criterion and the overall average number 
of errors to criterion (calling an Eastbound train Westbound or vice versa) 
was 7.50. The solutions were generally in accord with the Patch processing 
model. All but 3 of the 20 participants focused on one of the two categories. 
The solution types are summarized in Table 3. With two exceptions, the 
solutions were conjunctive, involved opportunistic disjunctions or involved 
opportunistic conjunctions. One person simply memorized the trains and 
another described a configural property involving openness and brightness. 
Of the 23 solutions stated, 14 included redundant features. An example of 
this is the rule that West trains are short or long with a circular load when 
“short or circular load” would have been sufficient. 
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TABLE 3 

Bases for Classification Provided by Participants in Experiment 3. 

Basis for Classification Number of Solutions 

Conjunctive rule 

Simple 

(e.g., East: Long and triangle load) 
6 

Redundant 

(e.g., East: Two wheels and triangle load and not short) 

Consistent descriptor plus condition 

(e.g., East: open top or closed top and clear rear wheels) 

Complete descriptor plus conjunction to eliminate 

counterexample 

1 

11 

3 

(e.g., East: Long cars and not long with dark wheels and a 

o circular load) 

Memorized individual Trains 

Configurol 

(“East trains looked more open and bright”) 

The numbers refer to number of solutions for a given type and since 3 of the 20 portici- 
pants said they hod poid equal attention to both categories the total number of solutions is 
23. The underlinings for the rule statements ore intended to help parse the rule com- 

ponents. 

Discussion 
The main effect of switching to a learning paradigm appeared to be to make 
it more difficult to discover sets of consistent and complete descriptors. The 
predominant strategy was to select a single descriptor and narrow it by 
conjunctively describing the counter-example (creating an opportunistic 
conjunction) or to extend it by describing the additional train (creating an 
opportunistic disjunction). There were no cases in which the most simple 
disjunction solution was reported. Frequently, these redundant components 
were associated with descriptions that applied to a single train, either to 
include it or to exclude it. It is not clear whether this form of redundancy 
differs in any fundamental way from the type of redundancy noted earlier. 
This pattern of results is consistent with the Patch model. 

EXPERIMENT 4 

Although the results of the second and third experiments were clearcut, 
they are based on a single set of stimulus materials. This experiment used 
verbal descriptions of two categories of hypothetical people in the rule in- 
duction task. The abstract structure is again such that comparison can be 
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made between conjunctive rules derived from properties that are complete 
but not consistent and disjunctive rules derived from properties that are 
consistent but not complete. One reason for anticipating a different pattern 
of results with verbal materials is that combinations of properties might be 
much less salient. A second factor varied was whether or not the two prop- 
erties that could be conjoined into a disjunctive or conjunctive rule were 
adjacent in the descriptions. Again, nonadjacent descriptions may favor 
consistency and disjunctive rules because it may be difficult to integrate 
information that is spatially separated. 

Method 

Subjects. The subjects were 54 male and female undergraduates attend- 
ing the University of Illinois who participated in the study in partial fulfill- 
ment of course requirements in introductory psychology. Participants were 
run in groups of 3 to 4 and the experiment lasted about 10 minutes. The sub- 
jects were assigned to a condition where relevant dimensions were either 
adjacent (Adjacent Group, n = 30) or nonadjacent (Nonadjacent Group, 
n =24). 

Stimuli. The stimulus materials consisted of descriptions of two groups 
of six people placed on a single sheet of paper partitioned by group. Each 
description consisted of a value on each of six dimensions: Marital Status 
(Single or Married), Education (B.A. or M.A.), Sports (Golf or Tennis), 
Music (Rock or Jazz), Employment (Self-employed or Corporation) and 
Hobby (Painting, Photography, or Ceramics). For four of the six dimen- 
sions, a given value was true of all members of one class but had two coun- 
terexamples in the contrast category, or was true of some (four) members of 
one class but had no counterexamples. The former properties have maximal 
category validity and the latter have maximal cue validity. 

It was possible to combine two complete but not consistent descriptors to 
form a valid conjunctive rule or to combine two consistent but not complete 
descriptors into a disjunctive rule. The relevant dimensions involved in 
either type of conjoining were either adjacent (first and second, third and 
fourth, or fifth and sixth) or nonadjacent (first and fourth, second and 
fourth, third and fifth, second and fifth). An example from the Nonadjacent 
condition is shown in Table 4. The two possible rules of central interest for 
the left category in Table 4 are “Married” and “Rock” versus “M.A.” or 
“Self-employed” and for the right category are “B.A.” and “Corporation” 
versus “Single” or “Jazz.” Although each participant saw the same ab- 
stract structure, several different randomizations of positions and proper- 
ties were employed to realize this abstract structure. 



TABLE 4 

An Example of the Classification Materials used in Experiment 4. 

Category A Category B 

Married Married 

M.A. B.A. 

Golf Tennis 

Rock Jazz 

Self-employed Corporation 

Ceramics Ceramics 

Married 

M.A. 

Tennis 

Rock 

Self-employed 

Painting 

Single 

B.A. 

Golf 

Rock 

Corporation 

Pointing 

Morried 

B.A. 

Golf 

Rock 

Self-employed 

Photography 

Single 

B.A. 

Tennis 

Rock 

Corporation 

Photography 

Morried 

M.A. 

Golf 

Rock 

Corporation 

Ceramics 

Single 

B.A. 

Tennis 
Jazz 

Corporation 

Ceramics 

Married 

M.A. 

Tennis 

Rock 

Corporotion 

Pointing 

Single 

B.A. 

Golf 

Jazz 

Corporation 

Pointing 

Morried 

B.A. 

Golf 

Rock 

Self-employed 

Photography 

Married 

B.A. 

Tennis 

Jazz 

Corporation 

Photography 

Each cluster of descriptors corresponds to on individual. In this example the dimensions 
relevant to a simple disjunctive or conjunctive rule are nonadiocent (1st and 4th or 2nd and 
5th). 

329 
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Procedure. Participants were given the sheet of twelve descriptions and 
their left-right grouping and asked to read them over carefully. They were 
told to come up with a basis for classifying the two groups that could be 
used to describe the groups and to determine the correct category member- 
ship for any new descriptions. For the Adjacent Group the pair of consis- 
tent descriptors or the pair of complete descriptors was always adjacent and 
for the Nonadjacent Group there was at least one intervening descriptor be- 
tween the two members of a potential pair (see Table 4). 

Results 
The results were generally the same as for the second experiment-there was 
a strong preference for conjunctive rules based on complete but not consis- 
tent descriptors over disjunctive rules derived from consistent but not com- 
plete descriptors. In the Adjacent Group, 21 people gave a conjunctive rule 
and only 2 a disjunctive rule. Of the remaining six people, three simply 
listed relevant properties, one gave a very complex (and incorrect) rule and 
two integrated the dimensions into a composite personality statement (e.g., 
dependent versus independent people). All together, there were 34 conjunc- 
tive rules given and only 5 disjunctive rules. For 8 of the 34 conjunctive 
rules additional properties were mentioned, again suggesting that rules are 
not strongly constrained by simplicity. On three occasions only a single 
property was mentioned for a rule and in each case this was a complete but 
not consistent property. 

The rule induction task proved to be more difficult for the Nonadjacent 
Group but the main pattern of results was the same. Eleven of the people 
gave conjunctive rules and no one gave a disjunctive rule. Eight people gave 
incomplete rules which can be further classified as consisting of a necessary 
feature (two people), a sufficient feature (one person), and both a necessary 
and sufficient feature (five people). Three people integrated the dimensions 
into a composite personality statement and the last person gave no rule. At 
the level of rules all 20 were conjunctive and 5 of these included an addi- 
tional property. 

Discussion 
The switch from simple trains to verbal descriptions of people did not 
change the preference for conjunctive rules based on complete properties 
over disjunctive rules based on consistent properties. Furthermore, 
although the Nonadjacent condition dramatically reduced the proportion of 
people coming up with a successful rule (from 80% to 46%), it did not di- 
minish this preference for conjunctive over disjunctive rules (it went from 
88% to 100%). 

This evidence that category validity plays an important role in rule induc- 
tion apparently has at least modest generality. We found no evidence that 
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components are ordered by information value alone or cue validity alone 
and then developed into rules. Again the results are consistent with the 
Patch model. 

VI. GENERAL DISCUSSION 

The set of experiments in the present paper forms a coherent pattern. The 
first study found that people’s rule inductions partially overlapped with 
those associated with the AI inductive learning program, INDUCE. The 
main strategies that emerged could be described in terms of a processing 
model, named Patch, that is inspired by INDUCE. According to the Patch 
model, two distinct types of opportunistic rules may appear. The main idea 
is that people set out to find descriptors that will span the target category 
without applying to examples from contrasting categories. If an assertion is 
consistent (covers no counterexamples) but not complete (does not span the 
target category), it is retained, and attention shifts to the members of the 
target category not covered by the original assertion. Then new assertions are 
sought that are consistent and complete for the reduced set (i.e., they form 
what we have referred to as an opportunistic disjunction). This is precisely 
how the main algorithm in INDUCE works. A second major possibility is 
that an assertion will be complete but not consistent. In this event, Patch 
assumes that people focus on the counter-examples and attempt to eliminate 
them by specializing their description, which can be done by negating prop- 
erties that are true of the counterexamples but not for the positive examples 
(that is, they form what we have referred to as an opportunistic conjunction). 
In support of this interpretation, negations (e.g., not triangular) appear 
almost exclusively with conjunctive rules. The remaining studies were de- 
signed to evaluate further implications of the Patch model. 

The second and third studies showed that people are far more likely to 
develop conjunctive rules with complete but not consistent descriptors than 
disjunctive rules with consistent but not complete descriptors. In addition, 
many rules derived by subjects contained redundant components. This 
observation is consistent with the Patch model and the idea that degree of 
“fit” to data and not just simplicity influences people’s inductive generali- 
zations. The fourth study used a learning procedure, and again component 
completeness (category validity) appeared to be more important than com- 
ponent consistency (cue validity). No participant gave a simple disjunctive 
rule. Instead, rules took one of three forms: (1) simple conjunctive, (2) dis- 
junctive based on a consistent but not complete description supplemented 
by a description of the remaining example (e.g., “short or long with a cir- 
cular load”), and (3) conjunctive based on a complete but not consistent de- 
scriptor supplemented with a description of the remaining counterexample. 
Again, a majority of the rule statements included more than the minimum 
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necessary descriptions. This pattern of results is consistent with the Patch 
model (and, by extension, with INDUCE). 

Relation to AI Models 
We have concentrated on the program INDUCE for reasons given in the 
introduction. As a psychological process model INDUCE fares rather well. 
Although it manifests a bias for conjunctive solutions it does allow for dis- 
junctive solutions of the form we have been referring to as “opportunistic 
disjunctions.” Its main shortcoming as a psychological model is that it does 
not contain an algorithm for “opportunistic conjunctions” where complete 
but not consistent rules are modified by negating properties of counter- 
examples.’ Although both types of opportunistic rules lack the elegance of a 
simple conjunctive description they do offer certain advantages. First of all, 
most concepts probably do not have singly necessary and jointly sufficient 
properties (see Medin & Smith, 1984, for a recent review) and, therefore, 
would allow for simple conjunctive rules. A second, related reason for con- 
sidering allowing for opportunistic rules in AI programs is that it would 
allow for better immunity to noisy or partially inconsistent data. The first 
part of opportunistic rules would not be affected by a few inconsistencies or 
counterexamples. 

Other AI programs fare less well as psychological models. In part, this is 
to be expected in that they were not intended to be models for human rule 
induction. The reasons why these alternative induction procedures do not 
mirror the human data are varied. First of all, some programs do not pro- 
vide for constructive generalization rules (e.g., Mitchell, 1977). Although 
other programs employ constructive generalization rules (e.g., Winston, 
1975; Hayes-Roth & McDermott, 1978) they contain no mechanisms for 
representing disjunctions. Most of the programs that do allow for disjunc- 
tions (e.g., Quinlan, 1975, 1979) assume that a discrimination net ordered 
by information value is developed to construct rules. These programs could 
not predict the strong preference for conjunctive rules and component cate- 
gory validity over disjunctive rules and component cue validity that was 
particularly salient in the second and third experiments. Finally, to our 
knowledge no AI program makes provision for the opportunistic conjunc- 
tions that were fairly prevalent in our human rule induction data. 

Generality 
The generality of the present results is certainly open to question. So far we 
have sampled from a small set of stimulus materials, procedures, and cate- 
gory structures. Yet to be determined is the extent to which we are studying 

’ Vere (1980) and Winston (1983) have developed programs that deal with exceptions or 

counter examples. Also, refer again to footnote 3. 
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fairly general processing constraints as opposed to constraints associated 
with our particular tasks and stimulus materials. Even if we are sanguine 
with respect to general constraints, we know little about the range of flexi- 
bility available to people in rule induction tasks. As one approach to the 
issue of human flexibility, we have conducted followup work using a rule 
induction task and employing the trains from the first experiment. The 
main independent variable was that instead of labeling the trains as East- or 
Westbound, different labels and cover stories were presented. For example, 
a participant might be told that the categories were trains run by smugglers 
versus legal trains, or trains constructed by creative versus uncreative chil- 
dren, or trains that travel in mountainous versus flat terrains. 

Our preliminary data suggest that these different labels influence rule 
inductions in systematic ways but these systemic changes are compatible 
with INDUCE and the Patch model. As one example of a change, the moun- 
tainous versus flat terrain labels make it much more likely that a participant 
will come up with the rule that the trains in one category have three or more 
different loads. In addition, certain salient properties that are readily linked 
to labels may lead participants to rules suggesting a greater bias toward con- 
sistency. For example, when the smuggler category included the train carry- 
ing a diamond-shaped load, a participant might give a rule of the form 
“diamond shaped load or. . . ,” even though the diamond descriptor 
applied to only a single load. Finally, for these more meaningful categories, 
we have some evidence that participants are more likely to tolerate rules 
which either are incomplete or have counter-examples. 

Although one could probably demonstrate that a semantically-rich but 
syntactically-awkward rule will be preferred to a semantically-impoverished 
but syntactically-simple rule, such a demonstration is unlikely to constitute 
a powerful constraint on the generality of the present results. In most do- 
mains of interest semantic considerations may narrow down the set of prop- 
erties which might enter into inductive generalizations but still leave an 
innumerable set of possible inductions. Among this set, syntactic considera- 
tions may play a powerful role. Of course, syntax and semantics may not be 
orthogonal. In novel domains, syntactic constraints may guide the search 
for semantically meaningful properties-a complete but not consistent de- 
scriptor is a good candidate for a necessary property and a consistent but 
not complete descriptor may turn out to be a sufficient property. (See Lebo- 
witz, 1986, and Wattenmaker, Nakamura, & Medin, 1987, for a more 
extensive discussion of this issue.) 

The Importance of Category Validity 
Probably the most striking result was the emergence of category validity as 
a significant factor in rule inductions. The preference for conjunctive over 
disjunctive rules in the second and third studies may be seen as deriving 
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from an opportunistic combining of complete but not consistent descrip- 
tors. Again, we hasten to add that stating constraints in terms of products 
or outputs derives from the processing assumptions of the Patch model 
combined with the particular category structures employed. With different 
processing demands and alternative category structures the same processing 
model that continues to give an important role to category validity may give 
rise to a preponderance of disjunctive rather than conjunctive rules (e.g., 
Experiment 1). 

There is still the question of whether these results on category validity 
have any significant generality. We think there are two strong reasons for 
thinking that they do. One is that our tasks are heavily biased toward dis- 
criminating rather than characterizing the categories and, therefore, heavily 
biased toward cue validity. Still, category validity emerged as a very signifi- 
cant factor and if that is true in the present circumstance, it ought to be even 
more true in the more general case where characterizing and understanding 
categories are more important. The second support for generality derives 
from some related research in diagnostic classification. 

One domain that may be particularly relevant to the present studies is the 
diagnostic classification associated with medical problem solving. Some 
recent research in this area can be interpreted as supporting the importance 
of category validity. One fairly elaborate study by Fox (1980) employed a 
task where an initial symptom was presented and the person performing in 
the task could either make a diagnosis or perform tests for additional symp- 
toms. Both the symptoms and diseases were realistic and the participants 
were third, fourth, and fifth year medical school students. All symptoms 
were associated with more than one disease and the probability of a symp- 
tom given a disease could and did vary from disease to disease. The medical 
students received extensive training on this task until their performance was 
asymptotic. Fox analyzed the sequential tests for symptoms in terms of a 
production system model and he did not directly consider the role of cue 
and category validity. There was one case, however, where the presenting 
symptom narrowed down the set of possible diseases to two and where some 
of the additional symptoms had the approximately same informative value 
but varied in category validity. Specifically, one symptom was associated 
with one disease half the time (probability of symptom/disease = JO) and 
never appeared with the other disease, whereas another symptom was asso- 
ciated with the first disease three-fourths of the time and appeared with the 
second one-fourth of the time. Because the diseases did not appear equally 
often the first symptom had a slightly greater information value but the sec- 
ond had a higher category validity. The results showed that the symptom 
with the higher category validity was tested for far more frequently than the 
other (33 out of 41 occasions). This suggests the influence of category valid- 
ity is not confined to meaningless stimuli, short tasks, and naive subjects. 
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A related study with first-year house officers (Wolf, Gruppen, & Billi, 
1985) also suggests the cue validity is not the sole factor determining diag- 
nostic classification. Wolf et al. used a highly simplified task but one that 
tends to underline their results. The medical personnel were presented with 
cards labeled with two diseases (A and B) and two symptoms and given in- 
formation about the prevalence of one of the symptoms in one of the 
disease categories. Participants were allowed to select one of the other three 
sources of information. TO determine cue validity, one would need to test 
for the prevalence of the given symptom in the alternative disease category. 
Only a minority of the house officers (24’70) consistently selected this opti- 
mal diagnostic information. Most of the nonoptimal choices were testing 
for the alternative symptom in the initial disease category. In general, if 
physicians organize their medical knowledge in terms of diseases and the 
likelihood that different symptoms are associated with them, then category 
validity may play a more important role in induction and diagnostic reason- 
ing. Eddy’s (1982) recent review of probabilistic reasoning in clinical medi- 
cine showing that people often act as if cue validity is the same as category 
validity is consistent with this suggestion. 

Relative emphases on cue versus category validity have different impli- 
cations for which procedural variations should optimize learning. Consider 
a classification learning task involving two categories where in the initial 
phases of learning the examples from alternative categories are either ran- 
domly intermixed or blocked by category (i.e., all the examples of one cate- 
gory appear before the examples of the other category). To determine cue 
validity, one needs to have a contrast category so mixing examples should 
facilitate learning. On the other hand, acquiring information about 
category validities ought to be facilitated when examples are blocked by 
categories. The evidence indicates that learning is considerably more effi- 
cient under blocked rather than mixed presentation for both rule-based 
(Whitman & Garner, 1963) and fuzzy categories (Murphy, 1984). 

The present findings, along with results from the studies just reviewed, 
undermine the idea that people classify and form inductive generalizations 
by computing cue validity or information value and then developing some- 
thing like a discrimination net model. On the other hand, cue validity is not 
totally ignored. For example, although the rules given for the trains in Ex- 
periment 2 were often redundant, they did not include properties that were 
true of all members of both categories (i.e., those with zero cue validity). In 
addition, one might readily imagine that rule redundancy could readily be 
decreased (or increased) by different instructions or task demands. The 
results do suggest, however, that category validity plays a more significant 
role than implied by previous accounts of rule induction. Given that this 
pattern of results apparently holds for medical diagnosis and classification 
learning, where the emphasis is on discrimination, it ought to be even more 
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powerful for natural object categories where the emphasis is often on the in- 
ferences which can be derived from knowledge of category membership. 
(See Gelman, 1987, for evidence that category membership guides inductive 
inferences in even young children.) 

Implications for Constraints 
The models we have been discussing suggest some fairly general biases or 
constraints on rule inductions. If we take as our starting point the vague 
notion that the only constraint needed is that people prefer simple rules to 
complex rules, then we can claim considerable progress. First of all, simplic- 
ity is not the whole story. Whether we define simplicity in terms of number 
of operators or complexity of descriptors, our experiments demonstrate in- 
ductive generalizations are influenced by factors other than simplicity. Peo- 
ple show strong preferences among equally simple rules and their rules very 
frequently contain more than the minimal content needed to discriminate 
between the categories. And it is not the case that this lack of parsimony 
arises from people’s failures to discover simple rules. In a large number of 
cases people stated rules that could be made more simple by dropping con- 
ditions. These and other observations support the idea that people’s induc- 
tions are also influenced by the concept offit or degree of specificity. The 
concept of fit implies that rule inductions may tend toward greater specific- 
ity than the most simple and general discriminating rules. One could think 
of this emphasis on fit as protecting the system from drawing generaliza- 
tions that are too broad and difficult to recover from (see Berwick, 1986). 
Also, the fit biases descriptions toward including the maximum number of 
correlated descriptors in one conjunctive statement. This bias toward cor- 
related attributes allows for convenient representation of inferences which 
may be drawn from category membership and may set the stage for causal 
linkages among descriptors (see Wattenmaker, et al., 1987). 

The Patch model also embodies other constraints. According to this 
model, one cannot specify independent of particular structures whether 
conjunctive or disjunctive rules are more likely to predominate. It is the 
case, however, that processes such as initially searching for completeness 
and then modifying descriptions to insure consistency will provide powerful 
biases in rule inductions and allow one to make predictions about the rela- 
tive preponderence of disjunctive and conjunctive rules for any particular 
structure. That is, the constraints are embodied in the process model for 
performance and not in some abstract statement of the general difficulty of 
different types of rules. 

The notion that constraints are embodied in process models suggests a 
future direction of research. For example, the difference in rule statement 
between the second and third studies versus the fourth study shows that 
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demands on memory associated with learning procedures provides an addi- 
tional source of constraints. A more detailed model for human rule induc- 
tion that included a limited working memory would provide a framework 
for exploring additional constraints on human rule induction. 

REFERENCES 

Beach, L.R. (1964). Cue probabilism and inference behavior. P&toiogical Monogrciphs, 
78(5, Whole No. 582). 

Berwick, R.C. (1986). Learning from positive-only examples: The subset principle and three 

case studies. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.), Machine 
Leurning Vol. II. (pp. 625-645). Los Altos, CA: Morgan Kaufman. 

Bourne, L.E.. Jr. (1974). An inference model of conceptual rule learning. In R. Solso (Ed.), 
Theories in cogni/ive psychology (pp. 231-256). Washington, DC: Erlbaum. 

Bowerman, M. (in press). Discussion: Mechanism of language acquisition. In B. MacWhinney 
(Ed.), Mechanisms 01 longuuge ucquisirion. Hillsdale, NJ: Erlbaum. 

Dietterich, T., & Michalski, R. (1981). Inductive learning of structural descriptions. ArriJicial 
Inrelligence, 16(3), 257-294. 

Dietterich, T., & Michalski, R. (1983). A comparative review of selected methods for learning 
from examples. In R.S. Michalski, J.G. Carbonell. & T.M. Mitchell (Eds.), Machine 
Learning (pp. 41-81). Palo Alto, CA: Tioga Publishing. 

Dominowski, R.L., & Wetherick, N.E. (1976). Inference processes in conceptual rule learning. 

Journal of Experimental Psychology: Human Learning and Memory, 2. l-10. 
Eddy, D.M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. 

In D. Kahneman, P. Slavic, & A. Tversky (Eds.), Judgmenr under uncerrainty: Heuris- 
tics and biases (pp. 249-267). New York: Cambridge University Press. 

Elio, R., &Anderson, J.R. (1981). The effects of category generalizations and instance similar- 
ity on schema abstraction. Journal of Experimenrul Psychology: Human Leurning and 

Memory, 7, 397-417. 
Fox, J. (1980). Making decisions under the influence of memory. Psychological Review, 87, 

190-221. 
Gelman, S. (1987). Young children’s inductions from natural kinds: The role of categories and 

appearances. Child Development. 
Goodman, N. (1972). Problems and projects. Indianapolis, IN: Bobbs-Merill. 
Hayes-Roth, F., & McDermott, J. (1978). An inference matching technique for inducting ab- 

stractions. Communications of rhe ACM, 21. 401-410. 
Haygood, R.C., & Bourne, L.E., Jr. (1965). Attribute- and rule-learning aspects of conceptual 

behavior. Psychological Review, 72, 175-195. 
Hunt, E. (1983). On the nature of intelligence. Science. 219. 141-146. 
Imai, S. (1966). Classification of sets of stimuli with different stimulus characteristics and 

numerical properties. Perception & Psychophysics, 1. 48-54. 
Keil, F.C. (1981). Constraints on knowledge and cognitive development. Psychologicul Re- 

view, 88, 197-227. 
Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive Science, 10. 219- 

240. 
Medin, D.L., & Smith, E.E. (1984). Concepts and concept formation. Annuul Review OfpsU- 

chology, 35, 113-138. 
Mervis, C.B., & Rosch, E. (1981). Categorization of natural objects. Annuul Review o/PsU- 

chology, 32, 89-I 15. 



338 MEDIN. WATTENMAKER, AND MICHALSKI 

Michalski, R.S. (1980). Pattern recognition as rule-guided inductive. IEEE Transaciions on 
Parrern Analysis and Machine Intelligence. Vol. PAMI-2, No. 4, 349-361. 

Michalski, R.S. (1983a). A theory and methodology of inductive learning. Arfifical Intel/i- 

gence, 20, 111-161. 
Michalski, R.S. (1983b). A theory and methodology of inductive learning. In R.S. Michalski, 

J.G. Carbonell, & T.M. Mitchell (Eds.), Machine learning, Vol. I. (pp. 83-134). Palo 

Alto, CA: Tioga Publishing. 
Michalski, R.S.. Carbonell, J.G., & Mitchell, T.M. (1983). Machine learning. Vol. I. Palo 

Alto, CA: Tioga Publishing. 
Michalski, R.S., Carbonell. J.G., & Mitchell, T.M. (1986). Machine /earning. Vol. II. Los 

Altos, CA: Morgan Kaufman. 
Michalski, R.S., & Chilausky. R.L. (1980). Learning by being told and learning from exam- 

ples: An experimental comparison of the two methods of knowledge acquisition in the 
context of developing an expert system for soybean disease diagnosis. Policy Analysis 
and Information S.vsrems, 4. 125- 160. 

Michalski, R.S., Mozetic, I.. Hong, J.. & Lavarc, N. (1986, August). The Multipurpose Incre- 

mental Learning System AQl5 and its testing application to three medical domains. 
(pp. 1041-1045). Proceedings of rhe American Association of Artificial Inlelligence 
Conference, Philadelphia, PA. 

Mitchell, T.M. (1977). Version spaces: A candidate elimination approach to rule learning. 
Proceedings of rhe Fifth Inrernational Joint Conference on Arfificial Inrelligence. 

IJCAI, Cambridge, MA. 
Murphy, T.D. (1984). Stimulus presentation effects and the processing of ill-defined categories. 

Unpublished manuscript. 
Neisser, U., & Weene, P. (1962). Hierarchies in concept attainment. Journal of Experimenral 

Psychology, 64, 640-645. 
Pinker, S. (1979). Formal models of language learning. Cognition, 7, 217-283. 

Quinlan, J.R. (1975). Induction over large data bases (Tech. Rep. HPP-79-14). Stanford, CA: 
Heuristic Programming Project, Stanford University. 

Quinlan, J.R. (1979). Discovering rules by induction from large collections of examples: A 
case study. In D. Michie (Ed.), Experr svsrems in rhe microelecrronic age (pp. 

168-201). Edinburgh, U.K.: Edinburgh University Press. 

Reznick, J.S., & Richman, C.L. (1976). Effects of class complexity, class frequency, and pre- 
experimental bias on rule learning. Journal of Experimenral Psychology: Human 
Learning and Memory, 2, 774-782. 

Rosch, E. (1975). Universals and cultural specifics in human categorization. In R. Brislin, S. 
Bochner, & W. Lonner (Eds.), Cross-culrural perspecrives on learning (pp. 177-205). 
New York: Halsted Press. 

Rosch, E.(1978). Principles of categorization. In E. Rosch & B.B. Lloyd (Eds.), Cognition and 
co~egorizoiion (pp. 27-48). Hillsdale. NJ: Erlbaum. 

Sowa, J.F. (1984). Conceprualsrrucrures: Information processing in mind and machine. Add- 
ison-Wesley. 

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79. 
281-299. 

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352. 

Vere, S.A. (1980). Multilevel counterfactuals for generalizations of relational concepts and 
productions. Ariificial Intelligence, 14. 138-164. 

Wason, P.C., & Johnson-Laird, P.N. (1972). Psychology of reasoning: Srrucrure and conrenr. 
Cambridge, MA: Harvard University Press. 

Wattenmaker, W.D., Nakamura, G.V., & Medin, D.L. (1987). Relationships between similar- 

ity-based and explanation-based categorization. In D. Hilton (Ed.), Contemporary 
science and norural explanation: Commonsense conceptions of causaliry. Sussex, 
England: Harvester Press. 



CONSTRAINTS IN INDUCTIVE LEARNING 339 

Whitman, J.R., &Garner, W.R. (1963). Concept learning as a function of the form of internal 
structure. Journal of Verbal Learning and Verbal Behavior, 2, 195-202. 

Winston, P.H. (1975). Learning structural descriptions from examples. In P.H. Winston 
(Ed.), The psychology of cornpurer vision. New York: McGraw-Hill. 

Winston, P.H. (1983, June). Learning by augmenting rules and accumulating censors. Pro- 
ceedings of the Internarional Machine Learning Workshop. Monticello, IL. 

Wolf, F.M., Gruppen, L.D., & Billi, J.E. (1985). Differential diagnosis and the competing- 
hypothesis heuristic. Journal of rhe American Medical Association, 253, 2858-2862. 


