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Similarity-based learning, which invalves largely structural comparisons of in- 

stances, and explanation-based learning, a knowledge-intensive method far 

analyzing instances to build generalized schemata, are two major inductive 

learning techniques in use in Artificial Intelligence. In this paper, we propose 

a combination of the two methods-applying explonotion-based techniques 

during the course of similiarity-based learning. For domains locking detailed 

explanatory rules, this combination can achieve the power of explanation- 

based learning without some of the computational problems thot can otherwise 

arise. We show how the ideas of predictability and interest con be particularly 

valuable in this context. We include an example of the computer program 

UNIMEM applying explanation to a generalization formed using similority- 

based methods. 

INTRODUCTION 

Current research in inductive machine learning includes two relatively dis- 
parate approaches: traditional similarity-based learning (SBL) that involves 
comparisons of instances’ of a concept (Winston, 1972; Winston, 1980; 
Michalski, 1980; Michalski, 1983; Dietterich & Michalski, 1983; Lebowitz, 
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mous reviewers of an earlier draft of this paper were quite useful as were several discussions 
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listed above. 
I An instance is defined here as a single item of input-event or object-given to a 

learning program. We use this term to avoid confusion over the various meanings of the word 
example. 
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1983a, 1983b). among many others, and a newer line of research that in- 
volves intensive application of knowledge to single instances (at a time), 
including analysis of hypothetical generalizations of the example, which we 
will refer to as explanation-bused learning2 (EBL) (Carbonell, 1983; DeJong, 
1983; Ellman, 1985; Minton, 1984; Mitchell, 1983; Mostow, 1983; Salzberg, 
1983; Silver, 1983). Little has been done to relate these two methods (although 
Michalski, 1983 provides a framework for doing so), and yet the combina- 
tion seems crucial for robust learning. In this paper, we will show how two 
ideas, predictabilty and interest, can help bridge the gap. Application of 
these ideas allows us to control the explanation process in situations where it 
might otherwise be computationally explosive. 

Considerable research has been done involving similarity-bused learn- 
ing. While there are many varieties of such learning, the basic idea is that a 
program takes a number of instances, compares them in terms of similarities 
and differences, and creates a generalized description based on this struc- 
tural analysis. Such learning has been studied: for cases where the input is 
specially prepared by a teacher; for unprepared input; where there are only 
positive instances; where there are both positive and negative instances; for 
a few instances; for many instances; for determining only a single concept at 
a time; and for determining multiple concepts. Cohen and Feigenbaum 
(1982) and Michalski, Carbonell, and Mitchell (1983) provide good sum- 
maries of this research. Practically, SBL programs have learned by compar- 
ing instances more of less syntactically, using little “high level” knowledge 
of their domains (other than in deciding how to represent each instance 
initially). 

In the last few years, another approach has become popular in the 
machine learning field-explanation-based learning. This line of research 
views learning as a knowledge-intensive activity, much like other tasks in 
Artificial Intelligence (AI). An EBL program takes a single instance, builds 
up an explanation of how the various components relate to each other using 
traditional, domain-dependent AI understanding or planning methods, and 
then generalizes the properties of various components of the instance as 
long as the explanation remains valid. What is left is then viewed as a gen- 
eralized description of the instance that can be applied in understanding fur- 
ther instances. This kind of learning is tremendously useful, as it allows 
generalized concepts to be determined on the basis of a single instance. On 
the other hand, the building and analysis of explanations does require ex- 
tremely detailed knowledge of the domain (which may minimize the need to 
learn). In addition, virtually all current EBL work is in the “perfect learner” 
paradigm that assumes that all input is noise-free and fits the correct final 
generalization. 

I Term due to Jerry DeJong. 
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Perhaps the easiest way to see the difference between these methods is 
to consider one of the earliest examples of SBL research, Winston’s blocks 
world arch learning program (Winston, 1972). Winston’s program learned 
the meaning of a simple blocks world concept such as an arch by comparing 
instances of arches and non-arches (carefully selected by a teacher) to deter- 
mine the essential elements of the concept. The positive instances were used 
to loosen constraints in the concept (e.g., if one arch has a rectangular lintel 
and another a triangular lintel then “arch” might only require a polyhedral 
lintel). Conversely, the negative instances made the definition more specific 
(so, if in the previous example, the structure with the triangular lintel was 
not an arch, then the program would assume that arches must have rectan- 
gular lintels). A sequence of well-chosen instances led to an accurately 
defined arch. 

EBL analysis in this domain would be very different. It would require 
detailed knowledge of the blocks world domain, perhaps including informa- 
tion about gravity, support requirements, and so forth. For EBL to make 
sense, there would have to be some information about the purpose of arches 
(otherwise they would just be arbitrary collections of blocks that could not 
be further analyzed). Suppose the purpose of an arch required it to support 
an object in the air and allow movement under it. EBL processing would 
begin with a single instance of an arch, say two red, rectangular supports 
and a blue, rectangular lintel. First, an EBL program would analyze the 
structure in terms of its domain knowledge-deducing that the uprights 
support the lintel, perhaps. 

After its initial analysis, the EBL program would further analyze its 
representation to determine which elements were crucial in achieving the 
desired purposes, and which elements could be generalized or were entirely 
superfluous and could be eliminated. In our example, it might determine 
that the existence of two supports, not touching each other, was crucial in 
allowing traffic underneath, but that the shape of the lintel could be gen- 
eralized to any shape that the uprights could support, since the purpose 
would still be achieved. The colors of the bricks would be found to be totally 
superfluous, and should not be part of a generalized arch description. 

We can see from this example the advantage of EBL, at least for cases 
where we have a substantial amount of domain knowledge, but not neces- 
sarily a large set of instances. We were able to determine a reasonable defini- 
tion of an arch from a single instance. Furthermore, even if we did have a 
number of instances available, by looking at a detailed representation of 
how the parts of the arch interrelate, we are somewhat less likely to general- 
ize the kinds of coincidental information that often arises in SBL. In addi- 
tion, the kinds of explanations needed for EBL may be useful for other 
aspects of processing (Schank, 1975, 1984). On the other hand, to success- 
fully carry out EBL processing, we had to have available a rather extensive 
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amount of information. Further, if we had many applicable understanding 
rules, the explanation process could become very expensive computationally. 

As we try to scale up EBL to domains larger than the blocks world, a 
major apparent problem is that it may be very difficult to develop the initial 
causal explanation that the process relies upon. This is particularly true for 
systems that lack detailed domain knowledge and only have available 
general explanatory rules. Additionally, since the EBL process is computa- 
tionally complex, we will not want to apply it to all instances or to all ele- 
ments of instances we do consider. We suggest here a model that combines 
SBL and EBL methods, one that does learning by noticing similarities when 
efficient (e.g., specific) understanding rules are not available, or when the 
payoff from EBL is not likely to be high, and applies EBL-type analysis at 
carefully selected times-most likely when we have a number of generaliza- 
tions based on similiarities that we are fairly confident of. The concepts that 
are generalized in this manner can then be applied to the explanation pro- 
cess for later instances. We feel that this is a promising path to robust learn- 
ing, that allows us to minimize the necessary initial domain information. 

2. AN EBL EXAMPLE 

DeJong (1983) used the following story, STORY 1, to illustrate explanation- 
based learning. We will use it to show some of the problems that can arise in 
doing such processing. 

STORY l- Paris police disclosed Tuesday that a man who identified him- 
self as Jean Maraneaux abducted the 12-year-old daughter of 
wealthy businessman Michel Boullard late last week. Boullard 
received a letter containing a snapshot of the kidnapped girl. 
The next day he received a telegram demanding that one mil- 
lion francs be left in a lobby waste basket of the crowded 
Pompidou Center in exchange for the girl. Asking that the 

I police not intervene, Boullard arranged for the delivery of the 
money. His daughter was found wandering blindfolded with 
her hands bound near his downtown office on Monday. 

DeJong’s program first applies standard story understanding tech- 
niques to build up a detailed causal representation of the events in STORY 1. 
This representation includes links that show how various aspects of the 
deduction of the causal links depend upon each other. Then, the program 
repeatedly substitutes more and more general descriptions of entities in the 
story, as long as the causal explanation remains valid. So, for instance, it 
might discover that the one million francs could be replaced by any large 
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amount of money and that the place where the money was transferred need 
not be the Pompidou Center, but could be any public place. The final repre- 
sentation, using the most generalized entities that allow the explanation to 
remain valid, constitutes a hypothesized “kidnap” schema. 

The EBL method works very well for this example, primarily because 
DeJong’s program has available a rich model of the domain, and so can 
build up a very detailed representation of the story. Further, EBL is applied 
efficiently because the program appears to have on& relevant information. 
If this story was embedded in a system with a wider range of information 
that operated on a large range of instances, several potentially serious prob- 
lems would arise including: (1) while looking at instances, deciding when to 
generalize; (2) forming the initial explanation of each instance in a compu- 
tationally feasible manner; and (3) from all the possible explanations that 
could be derived from a story, and all the parts of a complex explanation, 
deciding which pieces to generalize. 

DeJong does address the first question. He presents five heuristics for 
deciding when to generalize (whether the main goal of a character is achieved, 
whether the goal is general, whether the resources needed by the character 
are generally achievable, whether the method is at least as effective as known 
ones, and whether the method is not already known). These heuristics are 
certainly related to the interest-based proposal we will make, in some sense 
defining “interesting” for DeJong’s system. However, note that these 
heuristics are, like the method itself, knowledge intensive in terms of the 
information needed about the domain. We will consider the case where 
considerably less information is available for deciding when and what to 
generalize, and, more specifically, what instances (or generalizations made 
using SBL) should be subjected to full EBL analysis. 

Even given that a particular instance should be generalized, we may 
still have a problem in deciding what aspects of the instance should be sub- 
ject to generalization, and indeed how to control the process that creates the 
initial explanation. DeJong does not address these problems directly. Due 
to the state of his knowledge-base, he is able to generalize everything and 
explain everything. Since he has a very complete domain model, he can 
make use of existing story understanding methods, as described above, to 
derive the initial representation. So, for example, though his system must 
explain why the daughter of a wealthy businessman is a plausible kidnap 
target, it presumably does not try to explain why an event that involved a 
young girl was a kidnapping, that is, it does not start with the concept of a 
young girl and try to explain why that implied she was likely to be a kidnap 
target, since that would violate its detailed knowledge of intentionality. 

In the next section, we will show how one can deal with the problems 
of constructing an initial explanation and determining what parts of it to 
generalize, and then return to the issue of deciding when to generalize. 
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3. EBL WITH LESS INFORMATION-PREDICTABILITY 

As we have suggested, the main problems with EBL arise in domains where 
minimal domain knowledge is available. Such domains are typical in SBL. 
To show how these problems can be dealt with by integrating EBL with 
SBL, we will employ a domain used by a typical SBL program, UNIMEM 
(Lebowitz, 1983b). UNIMEM is a program that takes a stream of facts 
about objects in a domain and organizes them into a long-term generaliza- 
tion-based memory with specific instances stored in terms of generalized 
concepts (Lebowitz, 1980, 1982, 1983a, 1983b; Schank, 1982). UNIMEM 
learns by observation, and is neither specifically provided with a set of con- 
cepts to learn nor with “teacher-prepared” sequences of instances. It creates 
a hierarchy of new concepts by noticing similar instances and assuming that 
the similarities represent regularities in the domain. 

One domain that we have used UNIMEM on involves information 
about congressional voting records. 3 This domain consists of information 
about the voting records of U.S. congressmen and the states and districts 
they represent. The primary information is the voting record of congress- 
men on 15 major issues taken from the 1982 Almanac of American Politics. 
This information is augmented with a variety of facts about the states and 
districts where the congressmen reside. The kinds of generalizations we 
would expect to find would relate votes with each other (e.g., congressmen 
who oppose cutting the MX missle also oppose general cuts in defense spend- 
ing), or relate votes to features of districts (e.g., congressmen from high- 
income districts support tax cuts). The 15 votes we used are described in 
Figure 1, along with a voting summary for the congressmen in a random 50 
district sample used for examples in this paper. The numbers in parentheses 
are the votes of the entire House of Representatives. 

Figure 2 shows two generalizations and the instances they describe 
taken from a run of UNIMEM on the information about the subset of 50 
congressmen. 

Instances and generalizations in UNIMEM are described in terms of 
sets of features. The first generalization in Figure 2, GENS, was formed by 
noticing districts with similar features. It describes congressional districts 
with congressmen who voted “no” on the bills about a nuclear power halt 
and hospital cost containment and “yes” on bills about the Nicaragua ban 
and windfall profits for oil companies, where farm value is high (in the fifth 
of six categories; Lebowitz, 1985, describes the categorization method), 
where population went up between 1970 and 1980, and where the minority 
population is relatively low. This generalization describes one district directly 
(the Pennsylvania 22nd) and a number of others indirectly under more spe- 

’ Other domains that we have used UNIMEM on include information about the states 

in the U.S., descriptions of computer software, descriptions of spiders, and football plays. 



TOZ ~ainst Absent vote Nama Description 
-w--_-m ------ -_---------- ---------------------------------------- 

33 15 2 
22 21 7 
29 18 3 
28 21 1 
23 25 2 
20 28 2 
23 26 1 
18 32 0 
16 34 0 
22 24 4 
17 30 3 
23 27 0 
25 25 0 
20 28 2 
34 16 0 

alaska-parks Create parks in Naaka (26SP-157A) 
Chiller Guarantee loan to Chrysler (252r-14lA) 
&aft Register males for draft (219r-1SOA) 
education Create dept of education (210F-206A) 
fair-housing Enforce fair homing (2059-20411) 
food-strmp-cap Cap food etamp money (1461-276~) 
gas-cant-ban Prohibit gasoline price control (189F-225A) 
hoop-cost-cent Eospital cost containment prog (166P-234A) 
Nx-cut Reduce KX appropriations (152F-250A) 
nicaragua-ban Ban aid to Nicaraguan government (189F-221A] 
nut-power-halt Stop new nuclear plants (135F-254A) 
osha-cut Cut OSHA money (177F-240A) 
PAC-limit Limit PAC contributions (217F-19SA) 
aoc-fund-cut Switch social fun& to defenae (164P-264A) 
wind-tar-lim Limit windfall profits tax (236F-183A) 

Figure 1. Descriptions of the votes. 

GEN5 
NUC-POWER-HALT VOTE 
STATE FARM-VAL 
NICARAGUA-BAN VOTE 
BOSP-COST-CONT VOTE 
DISTRICT POP-DIR 

NO ill (13) 
FAR5:6 [ll (20) 
YES 121 (0) 
NO 141 (14) 
UP (41 (26) 

WIND-TAX-LM VOTE YES (41 (18) 
STATE MINORITY-PCT MIN1:2 181 (40) 
[PlzNNSYLVANIA22] 
(w CALIFORNIA14 CALIFORNI1126 CALIFORNIA34 FLORIDA6 GEORGIA1 

GEORGIA6 KENTUCKY1 KENTUCKY4 MISSISSIPPI5 NORTHCAROLINAlO PENNSYLVANIA15 
TEXAS6 TEXAS22 VIRGININ VIRGINIA2 VIRGINIA4 VIPGINIAC) 

GENC 
FOOD-STAMP-CAP VOTE YES t11 (13) 
STATE INCOME INc3:4 111 (6) 
STATE SEATS GAINED 111 (4) 
CHRYSLER VOTE NO 121 (9) 
GAS-CON-r-BAN VOTE NO [21 (9) 
sot-FUND-CUT VOTE YES t21 (12) 
OSHA-CUT VOTE YES PI (14) 
CANDIDATE PARTY R 121 (8) 
PA&LIMIT VOTE NO PI (16) 
FAIR-ROUSING VOTE NO t31 113) 
[PFXNSYLVANIA15] 
(CALIFORNIA14 ULJFORNIA26 C!ALIFORNIA2O cALIFOFNIlu4 FLORIDA6 

TEXAS6 VIRGINIA1 VIRGINIAQ) 

Two UNINEN generalizations -- GENS, made up of eevem features 
(NUC-POWER-HALT VOTE NO, STATE FARM-VAL FAR5:6, etc.) and -6, a 
sub-generalization that inherits all those features, and includes 

10 others (FOOD-STAMP-CAP VOTE YES, STATE INCOME INC3:4, etc.). 
Instances stored directly with the generalization are in brackets 

(PENNSYLVANIA22 for GEN5) and those atored under a generalization's 
sub-generalizations are in braces. The instances stored under each 

generalization also inherit these features. The numbers in brackets 
arm predictability information, while the numbers in parenthesis 

are confidence levels. 

Figure 2. A piece of UNIMEM memory. 
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cific versions of this generalization. GEN6 is one such more specific gen- 
eralization. It describes moderately high income districts with Republican 
congressmen who voted in a particular way on several bills. GEN6 describes 
the Pennsylvania 15th directly, and several other districts indirectly. The 
numbers in parentheses in Figure 2 indicate UNIMEM’s confidence in each 
feature (the numbers start at 0 and can rise or fall). The numbers in brackets 
are predictability information, which will be explained later. 

The EBL programs in the literature would not approach this domain 
by looking at how voting records of various congressmen compare to each 
other, as UNIMEM does. Presumably they would start by looking in detail 
at the information from a given congressional district. The information 
available to UNIMEM for one such district, in the form of 32 features about 
the district, the state it is located in, and the votes of its congressman on a 
number of issues, is shown in Figure 3. 

An EBL program, such as DeJong’s, would first build up a causal 
analysis of the various features of the input, using whatever reasoning rules 
were available. Then, it would determine how properties of the features 
could be generalized such that the causal analysis would still hold up. So, 
for example, the program might decide the Pennsylvania 22nd’s congress- 
man voted against the MX cut because military spending in the district was 
high. Then it would see just how high the military spending had to be for the 
causal explanation to hold. 

This approach might be appropriate if we had very thorough informa- 
tion about the domain and could construct a detailed causal explanation, 
particularly if there were only a limited number of points to vary during the 
EBL generalization phase (as that would limit the analysis we would have to 
do with the explanation). However, if we have only very general rules to 
apply, as is often the case in a new domain, then the explanation process 

r*atura*: PENNSYLVANIA22 (DISTRICT) 
CANDIDATE ocmJPATIou IAn 
DISTRICT POP-DIR DP 
STATS IS PENUSYLVANIA 
NICARAGUA-BAW VOTE ns 
NE-POWER-EALT WTE No 
rAIB-mtJsIlG VOTZ ns 
m-STUD-CAP VOTB Ii0 
OSEA-CDT JmTE NO 
EOSP-COSTW VOTE MO 
WIUD-TAX-LM VOTX YES 
STATE SEATS LOST 
STAT’S POPULATION POP6:7 
STATE IIMORITY-PCT MIN1:2 
STAR SISB SIZ3':6 
STATE CRPIIC-BATB CRI2:5 
STATt MILITARY-$ xuL7:9 
STATB TABM-VAL rAREi: 

I DISTRICT 
1 CANDIDATS 
1 DRAIT 

I =-CDT 
1 ALASKA-PABXS 
1 PAC-LIMIT 
1 EDUCATION 
I sot-rDND-CDT 
1 GAS-CONT-aaN 
I CBRYSLER 
I STATB 

I STATS 
1 STATB 
1 STATS 

1 STATS 
1 STATS 
1 STATB 

PARTY 
VOTE 
VOTE 
VWR 
VOTE 
VOTE 
VDTB 
VOTE 
VOTB 
REGION 
URBAN-PCT 
MIGRATION 
scEOOL-EXP 
STATE-DEBT 
IN- 
T-S 

INC2:4 
D 
YES 
NO 
No 
No 
YES 
NO 
YES 
YES 
MA 
DRB6:6 
MIGl:O 
scE3:3 
DEB6:7 
INc3:4 
TAX2:5 

Figure 3. The Pennsylvania 22nd. 
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would not be combinatorially feasible, particularly as it must be applied to 
many modified versions of the instance as constraints are relaxed. 

What we propose is, first, to apply EBL methods to inductively cre- 
ated generalizations, rather than individual instances or episodes. This 
means that we will wait for SBL methods to suggest generalizations that will 
then be analyzed by EBL methods (i.e., a causal explanation will be derived 
and constraint-loosening performed). At the very least, this will avoid ana- 
lyzing instances that are totally atypical (as they will not take part in SBL 
generalizations). This is similar to the way that Lenat has used the idea of 
“worth” to control learning by discovery in AM (Lenat, 1982) and EURISKO 
(Lenat, 1983) (see Section 5). There is a larger advantage, however. 

Causal explanation involves determining why a given set of conditions 
(causes) leads to an observed behavior (results). In order to do this in a 
domain where we have limited knowledge, we must first identify which ele- 
ments of an instance are causes, and which are results. Doing so will provide 
a focus for applying general rules to come up with an explanation of the in- 
stance. Most EBL systems determine the explanation in a fashion unrelated 
to the generalization phase, and need not deal with this problem. For exam- 
ple, DeJong bases his EBL on a causal explanation of the sort provided in 
Carbonell (1981), Schank and Abelson (1977), and Wilensky (1983), based 
on detailed knowledge of human intentionality. The rules about human 
intentionality used in such methods imply the causes of a situation (e.g., 
human intentional actions). 

If we look at generalization GENS in Figure 2, we see that identifica- 
tion of causes is not trivial. For example, it might be that districts with high 
farm property values are thought to have oil reserves and hence their con- 
gressmen would vote to limit any windfall profits tax. Conversely, it might 
be that voting to limit the windfall profits tax actually causes the farm value 
to be high, as potential investors would know oil profits would not be sub- 
ject to high taxes. 

Our solution to this problem is to usepredictability (presented in Lebo- 
witz, 1980, 1983a for indexing and understanding purposes). The basic idea 
is that in a given context, features of a generalization that are most nearly 
unique to the generalization indicate its applicability.’ These features are 
called predictive. Most importantly here, the predictive features are exactly 
those that are likely to be causes in a causal explanation. This follows from 
the observation that non-predictive features occur in many generalizations, 
and are associated with many different combinations of other features. 
Hence, they do not predict a single outcome. To take the simplest possible 
case, if a generalization was made up of two features, A and B, and A oc- 
curred in one generalization and B in many, B could not cause A. If it did, 
A would appear in all the other generalizations that B was in. 

’ Predictability can be viewed as an operational definition similar to the concept of cue 

discriminability used in perceptual categorization (Restle, 1962). 
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As a further example of predictability, if we noticed that all AI con- 
ferences were exciting, we would assume that a conference being about AI 
causes it to be exciting. We probably have few generalizations about AI con- 
ferences, as opposed to assuming that because an event was exciting it was 
probably an AI conference.’ (See Goodman, 1965, and Hempel, 1943 for 
related philosophical discussion.) 

If we return to Figure 2, we can see how predictability might be used. 
The numbers in brackets next to each feature indicate how many of the gen- 
eralizations under the generalization’s parent node involve that feature. So, 
in GEN6, the “yes” vote on the food stamp cap does not appear in any gen- 
eralization under GENS other than GEN6. On the other hand, a “no” vote 
on fair housing appears in three generalizations under GENS. The figures 
for the features in GENS reflect the generalizations under its parent node. 

Using the predictability information from GENS, we can see that an 
explanation should be formed that shows why features like a “no” vote on 
the nuclear power halt, high farm value, and possibly a “yes” vote on the 
Nicaraguan ban issue imply the remaining features. The other features will 
certainly work less well as the causes in an explanation, since they are asso- 
ciated with a variety of different features in other generalizations. An EBL 
program trying to explain GEN6 should look for rules that indicate why a 
congressman from a state with fairly high income that gained congressional 
seats and who voted “yes” on a food stamp cap (the predictive features, 
which we assume to be causes) should be a Republican who voted against 
the Chrysler guarantee, against gas controls, and so forth. 

In developing a causal analysis, on/y predictive features may be causes 
(or be indicative of causes), although not every predictive feature need be 
causes. Non-predictive features having causal impact would cause contra- 
dictions, as such features co-occur with a variety of other features (i.e., they 
cannot consistently cause one set of features). With the predictive features 
as a causal starting point, we can apply general plan/goal-based understand- 
ing methods such as those in Carbonell(198 l), Schank and Abelson (1977), 
and Wilensky (1983), or whatever explanation methods seem appropriate. 

Predictability can also be applied in analyzing specific instances (should 
we wish to do so). If we wanted to apply EBL to the Pennsylvania 22nd dis- 
trict, for example, in the manner of current EBL programs, then we could 
use the predictability of the generalization it is stored with (GENS, in this 
case) to provide a starting point for the analysis. While such analysis may 
still be difficult, as any single instance might be anomalous in some way, at 
least the search will not be totally unconstrained. Note that if the instance is 
stored in several places in memory (which is possible, since generalizations 

’ Note that if we knew a number of things about AI conferences, that they are usually in 
the summer, in interesting locations, have papers in a number of areas, perhaps, then these 

facts would form a single conjunctive generalization. 
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in UNIMEM are not viewed as being mutually exclusive), then several possi- 
ble explanations might be generated. 

The point here is simply that in any given situation there are a variety 
of different features or effects we could try to explain. Predictability pro- 
vides a focus for application of general explanatory rules, especially for 
domains with limited amounts of available world knowledge. Many prob- 
lems remain in applying predictability, most notably how to deal with com- 
binations of features that are predictive even when none of the individual 
features are, but predictability appears to provide useful clues in building 
up knowledge of a domain. 

4. APPLYING PREDICTABILITY-AN EXAMPLE 

The use of predictability in the EBL process can best be seen with an exam- 
ple. We will use for illustrative purposes a simple “backward chaining” ex- 
planation mechanism that we have implemented which applies simple rules 
to the generalizations that are made by UNIMEM in the congressional voting 
domain. Our initial explanation implementation focuses on how predicta- 
bility can be used to help construct an initial causal explanation of a gen- 
eralization. Further work is needed to show how this explanation can then 
be used during later SBL processing. 

To apply explanation-based methods, we must supply rules that cap- 
ture our initial understanding of the domain. The obvious way to do this for 
UNIMEM is with implications that capture hypothesized low-level causal 
connections among features. We have rules that indicate that the presence 
of one feature(s) causes the presence of another feature(s), that is, F,-F,. 
Such rules can be used in understanding the causality underlying a set of 
features in one of two ways: (1) from the presence of one feature (F,) we 
“explain” the presence of another (F,); (2) from the known absence of one 
feature (FJ “explain” the absence of another feature (F,) whose presence 
would have forced the presence of the first. 

The second usage of our rules is particularly important in “closed- 
world” domains, like the congressional votes in our example. Absences are 
easy to detect; a “yes” vote by a given congressman indicates conclusively 
that a “no” vote did not occur. For example, one of our rules is that “a 
congressman from a state with a major defense industry will vote against 
the MX cut.” Using this rule, we can explain a “no” MX-cut vote from a 
defense industry in the congressman’s state. We can also “explain” the lack 
of a defense industry from a “yes” MX-cut vote, although the complete 
underlying causality is, of course, more complicated. We cannot, though, 
explain a “yes” MX-cut vote from the absence of a defense industry (the 
rules are one-directional). 
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Figure 4 illustrates a set of rules used in the experiments described 
here. It is important to recognize that in this paper we are primarily trying 
to indicate how causal explanation rules can be applied to SBL learning. 
While we tried to make the rules plausible, their details are not critical to 
this presentation. Although the rules were not specifically created to explain 
just this one generalization, they were created with an eye on a small num- 
ber of examples. We will discuss briefly below how a more robust set of such 
rules might be created. 

The rules in Figure 4 are quite simple from an implementation stand- 
point. Each rule indicates that if the features on the left of the “ => ” de- 
scribe a congressional district then they can be used to plausibly explain the 
features on the right. The first rule, for example, indicates that we believe 
that a vote for parks in Alaska can be explained by the presence of pro-wild- 
life voters in the congressman’s state. Multiple features on either side of the 
implication indicate conjunction. (Disjunction is handled with multiple 
rules .) 

The rules in Figure 4 indicate a believed direction of causality for rela- 
tions among features. They reflect an informal level of explanation that 
people often use. The rules may hide a number of steps in the true underly- 
ing causal mechanism. This is quite important when we are using the rules in 
a contrapositive sense, since a full explanation then involves what would 
have happened in other cases. 

(STATE VOTERS PRO-WILDLIFE) => (AIASKA-PARXS VOTE I) 
(STATS TYPE RURAL) (STATE INDUSTRY LOWTECJi) => (STATE VOTERS PRO-WILDLIFE) 
(STATE TYPE runzu) => (ETA= SIZE (< SIZI:C)) 
(STATE INDUSTRY DEFENSE) => (MX-CUT VOTE A) 
(DISTRICT TYPE BOOXDIST) => (DISTRICT POP-DIR UP) 
(DISTRICT TYPE EOCMlIST) (STATE INCOME (> INC2:l)) => 

(STATE FARM-VA&PER-ACRE (> FAR4:6)) 
(DISTRICT-TYPE BOOMDIST) (STATE DEBT (> DEB4:7)) => (STATE INCOME (> INC2:4)) 
(DISTRICT TYPE BOOMDIST) => (STATE MIDDLECLASS YUPPIE) 
(STATE YIDDLECIASS YIJ?PIE) => (SOC-FUND-CUT VOTE A) (OSHA-CUT VOTE A) 
(STATE VOTERS PRO-EDUCATION) => (STATE VOTERS PRO-WILDLIFE) 
(STATE TYPE um.m) => (STATE TAXE~-PE~ p TAXI :5) ) 
(STATE INCOME (<= INC2:l)) => (STATE TAXES-PERIXP (> TAx~:S)) 
(NOT (STATE INDUSTRY DEFENSE)) => (STATE TAXES-PERCXP (> TAX2:S)) 
(STATE INDUSTRY HIGHTECH) => (STATE SEATS GAIN) 
(STATE VOTERS ANTI-EDUCATION) => (EDUCKTION '3TE A) 
(STATE mcom (< nac3:4)) => (NOT (STATE MIDDLECLASS YDPPIE)) 
(DISTRICT TYPE STATIC) f> (PA&LIMIT VOTE A) 

(STATE m (< INC3:l)) => (STATE SCHOOL-EXP (< Xx3:3)) 
(STATE SIZE (> SIZ3:6)) => (STATE SCHOOL-EXP (< SC83 : 3) ) 
(STATE VOTERS ANTI-EDUCATION) => (STATE SCXOOL-EXP (< SCS3:3)) 
(NOT (STATE MIDDI&XIASS YuppIE)) => (FOOD-STAMP-CAP VOTE I) 
(NOT (DISTRICT PHILOSOPHY RIGE-TECH)) => (WIND-TAX-LM VOTE A) 
(NOT (DISTRICT PBILOSOPBY FREE-W)) => (ROSP-COST-CONT VOTE F) 
(DISTRICT PEILOSOPHY FREE-ENT) (DISTRICT PHILOSOPHY HIGH-TECH) => 

(DISTRICT TYPE BOOMDIST) 
=> (STATE YIN-PCT MINI :2) 

Figure 4. Rules about the CD voting record domoin. 
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Representing rules as simple causal implications seems reasonable as a 
first approximation. It corresponds to production system methodology 
(Newell, 1973; Waterman & Hayes-Roth, 1978). Knowledge about the do- 
main is represented in the form of small chunks that can be combined in 
various ways. The primary goal of the explanation task then becomes to 
combine these simple rules to build up causal representations that describe 
larger conceptual situations that can be generalized. 

Note that we do nof view the rules as being guaranteed correct. Rather, 
they are viewed as heuristic and tentative, representing our best current view 
of the domain. This would be the best we could do for many domains. In 
the long run, we expect to introduce a strong feedback mechanism that 
would use observed generalizations to help evaluate the rules, even while we 
use the rules to help explain the generalizations. Obviously, this would in- 
troduce a strong element of subjective understanding in the sense of Abel- 
son (1973) or Carbonell (1981). 

With initial rules in hand, UNIMEM can engage in EBL. For the 
moment, we ignore the problem of deciding when during SBL a generaliza- 
tion should be analyzed using EBL, and simply show how we would process 
a typical generalization. Figure 5 shows one of the generalizations made by 
UNIMEM in the same run of the program mentioned in Section 3. It de- 
scribes congressional districts that gained population since the last census, 
that are located in medium-sized states with low tax rates, high farm value, 
and low minority population, and where the congressman voted “yes” on 
the windfall profits and draft votes and “no” on the hospital cost contain- 
ment and MX-cut votes. As before, the numbers in brackets are predictabil- 
ity information (how many generalizations the feature appears in) and the 
numbers in parentheses are confidence values. 

As mentioned earlier, an EBL analysis of GENl would begin by devel- 
oping a plausible causal explanation of the various features. Even if we 
restrict ourselves to the rules in Figure 4, finding such an explanation would 
be non-trivial, as many different rules would apply at each stage of the 
analysis. Indeed, in some cases, the rules may be mutually contradictory, 
due to their heuristic nature. For this reason, plus efficiency considerations, 
we must control the explanation process. As presented in Section 3, we use 
predictability to provide this control. 

GENl 
WIND-TAX-LM VOTE 
DRAFT VOTE 
ROSP-COST-CONT VOTE 
MX-CUT WTZ 
STATE TAXES 
DISTRICT POP-DIR 
STATS EAR&f-VAL 
STATE SIZE 
STATE Mm-PCT 

E 
E 
A 

A 
TAX2:5 
UP 
rAF45:6 
SIZ3:6 
MIN1:2 

[II (16) 
[II (9) 
[21 (12) 
r21 (16) 
121 (18) 
t31 (26) 
141 (20) 
141 (10) 
[61 (44) 

Figure 5. Another typical generalization-GENl. 
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We begin our analysis by assuming that all the features less than or 
equal to a given threshold (two, here) are predictive (the four votes and low 
tax rate in GENl), and hence potential causes in our explanation. We assume 
that all the rest of the features of GENl (the remaining state features and 
the decrease in population) are non-predictive, and should be explainable 
from the predictive features. UNIMEM then uses simple backwards chain- 
ing methods to find causal chains that connect the predictive features to the 
non-predictive ones. Figure 6 shows the output from this analysis. The fea- 
tures marked with “c” are the assumed causes (determined by predictability); 
the results (non-predictive features) are marked with “r.” The rules marked 
with asterisks (*) are the contrapositive forms of the original rules. That is, 
the absence of the right side of the rule (usually the presence of a contradic- 
tory feature, often an opposite vote) is being used to explain the negation of 
the left side. 

The output in Figure 6 shows all the applicable rules needed to explain 
the non-predictive features in GENl from the predictive ones. Note that 
neither the MX cut nor the draft votes had to be used in constructing the ex- 
planation. We will return to this in a moment. The chaining process involves 
the construction of a number of explanatory causal chains simultaneously. 
In order to make the explanations in Figure 6 clearer we have displayed them 
graphically in Figure 7. (Again, “c” and “r” mark causes and results.) The 
links marked with “*” are those where the contrapositive of rules has been 
used, so that the full underlying causality would involve prevention of cer- 
tain states from occurring. 

Figure 7 makes clear that we have found the kinds of relationships we 
are looking for. We see that since GENl describes low tax states, the states 
are probably rural, small, and high-income. The windfall and hospital cost 
containment votes would only be cast by congressmen from districts that 
are high-tech-conscious and pro-free-enterprise. Such districts would nor- 
mally be “boom” areas. This, in turn, implies that the districts are likely to 
have high farm value and rising population (due to the “high-tech” boom). 

Nothing left to prove 
Final rule chain: 
=> (STATE MIN-PCT MIN1:2)r 
(STATE TYPE RURAL) => (STATE SISE (< SIZ4:C))r 
(DISTRICT TYPE BOOMDIST) => (DISTRICT POP-DIR IJP)r 
(STATE TAXES-PERCAP (<= TAX2 :5) )c => (NOT (STATE TYPE URBAN)) [+I 
(DISTRICT TYPE BOOMDIST) (STATE INCOME (> INC2:l)) => 

(STATE PAP&f-VAL-PER-ACRE (> PAR4:6))r 
(STATE TAXES-PERCAP (<= Tti:s))C => (STATE INCOME (> INC2:l)) [*] 
(DISTRICT PHILOSOPHY FREE-ENT) (DISTRICT PHILOSOPHY HIGR-TECH) r> 

(DISTRICT TYPE BOOMDIST) 
(WIND-TAX-LIM VOTE F)c => (DISTRICT PHILOSOPHY HIGH-TECH) [*] 
(WOSP-COST-CONT VOTE A)c => (DISTRICT PHILOSOPHY FREE-ENT) [*] 
Unused causes -- (IJX-CUT VOTE A) (DRAFT VOTE F) 

Figure 6. Causal analysis of GENl. 
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STATS T-S LO, (c) --•--> STATN NOT m--------------------, STATS SIEL SNALL (r) 
\ 

\ 
WIND-TAX-L= r (c) -*--> HI--- --\ \ 

\-> NOW-DISTRICT \ 
/ \ \ \ 

HOSP-COST-CONT A (6) -*--> m-NW'RNPRISZ \ \---------> STAT1 rAPl4-VAL EIGH (r) 
\ 

\-------------> DISTRICT POPDIATION UP (r) 

---------------------------------------------, STAR NIp+PCT HIGH (=) 

NX-CDT A (c) 

Figure 7. The analysis of GENl, graphically. 

The low minority level is simply a default (46 of the 50 states fall in this 
class). These cascaded rules then explain all the non-predictive features of 
GENl. If it seems a little strange that the explanation has several votes at 
the beginning of the causal chains (as if they directly caused properties of 
the states), notice that in each case the relevant rules are being used in con- 
trapositive form, meaning that there are really underlying factors inhibiting 
the opposite vote. 

As noted earlier, the MX cut and draft votes do not appear in the ex- 
planations of any other features. There are two possible reasons for this: (1) 
These features may be irrelevant to the generalization, the result of a coinci- 
dence that has not been identified by UNIMEM’s confidence evaluation 
methods (Lebowitz, 1982, 1983a, 1983b), or (2) the features may be explain- 
able by the other predictive features. Their appearance in only a small num- 
ber of generalizations would then be due to lack of data-that is, they are 
not really predictive. To test this second possibility, we have UNIMEM add 
the unused features to the set of potential results, and redo the explanation 
process. The results of this re-application of the rules is shown in Figure 8 
and illustrated graphically in Figure 9. 

We can see from Figure 9 that the MX-cut vote is indeed explainable 
from the other predictive features (low taxes imply a pro-defense state which 
explains the MX-cut vote). On the other hand, the draft vote still remains 
causally unconnected, which means either that it does not belong in the 
generalization, or should be connected by a rule unknown to the system. 

The current version of UNIMEM does not follow up on the causal 
explanation that it has built. If we were to continue the EBL process, we 
would use the explanation built for the specific generalization and see if we 
could abstract it and determine the essential features of the explanation. So, 
for example, we might infer that the windfall tax limit vote is not necessary 
to conclude that a district is interested in high-tech, but instead any positive 
vote on limiting taxes is satisfactory. We would, of course, need further pre- 
supplied knowledge to allow us to analyze in this way (although our existing 
rules can be used to some degree; for example, the rules that require only a 
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Reprocessing with unused causes aa results 

No more valid rules 
Final rule chain: 
=> (STATE MIN-PCT MIN1:2)r 
(STATE INDUSTRY DEFENSE) => (Mx-CUT VOTE A)r 
(STATE TYPE RURAL) => (STATE SIZE (< SIZ4:6))r 
(DISTRICT TYPE BOOMDIST) => (DISTRICT POP-DIR UP)r 
(STATE TAXES-PERCAP (<= TAX2:S))c => (NOT (STATE TYPE URBAN)) [*I 
(DISTRICT TYPE BOOMDIST) (STATE INCOME (> INC2:4)) => 

(STATE FARM-VILC-PER-ACRE (> FARQ: 6))~ 
(STATE TAXES-PERCAP (<= TAx~:S))C => (STATE INCOME (> INC2:4)) [*] 
(STATE TAXES-PERC~P (<= TAx~:~))c => (STATE INDUSTRY IXFEZNS~) [*I 

(DISTRICT PRILOSOPHY FREE-ENT) (DISTRICT PHILOSOPHY HIGH-TECH) => 
(DISTRICT TYPE BOOMDIST) 

(WIND-TAX-LM VOTE B)c => (DISTRICT PHILOSOPHY BIGH-TECH) [*] 
(HOSP-COST-CONT VOTE A)c => (DISTRICT PRIMSOPHY FREE-ENT) [*I 

Unexplained results: (DRAFT VOTE F) 
Unused causes -- none 

Figure 8. Reanalyzing GENl. 

,-*--, pm-D-S* -----------------------) m-m * (=) 

I 
STATE T-S ,,O" (c) --"--> STAR NOT URBAN--------------------> STATB SIZE S-L (E) 

\ 
\------------------------------*--> ETA= mcm "Ia 

\ 
WIND-TAX-LIN I (c) -*--> HIGH-TECS ---\ \ 

\-> ECON-DISTRICT \ 
I \ \ \ 

HOSP-COST-COKT A (c) -*--> FREE-ENTERPRISE \ \---------, STATE FAPM-VAL HIGH (r) 
\ 

\-------------, DISTRICT POPVLATION VP (r‘) 

DRAFT I (unerplained) 

Figure 9. The re-analysis of GENl, graphically. 

range of values, e.g., less than the third category out of 6, would allow us to 
relax a specific category to a range). 

The main point here is that we have constructed an explanation ade- 
quate to apply all the EBL techniques discussed in Section 2 (at least as far 
as our rules allow). 

There are several ways we could use our explanatory analysis within 
UNIMEM, or indeed SBL in general. The most obvious is to drop from a 
generalization any features that were involved in our analyses (e.g., the draft 
vote in our example). This adds a new way to detect coincidence in general- 
izations. In addition, features that we thought were predictive, but did not 
explain anything else, and were explainable themselves (e.g., the MX-cut 
vote in our example), could be marked as non-predictive, even though they 
appear to be predictive from their frequency in different generalizations. 
This has a significant effect on the application of generalizations to new in- 
stances, as only predictive features can indicate a generalization’s potential 
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relevance. In this case, a “no” MX-cut vote would no longer be used to indi- 
cate the applicability of GENl. We can also imagine splitting up generaliza- 
tions based on the explanations, and other uses involving the details of the 
analysis. To properly implement these ideas would require building a full set 
of explanatory rules covering all the features in the domain and developing 
an algorithm for deciding when to apply explanatory analysis. 

A final way to use our explanation was mentioned earlier-we could 
evaluate the reliability of our initial, tentative rules. Our view is that the ini- 
tial rules for a domain would be hand-coded, as was done for the example 
above. Later rules could be abstracted from generalizations in which we 
have high confidence. Then, if we used a confidence scheme for rules simi- 
lar to UNIMEM’s confidence levels for generalizations, we would increase 
our confidence in the rules used to build up explanations, but decrease con- 
fidence in rules that might have been applied but were not, particularly if 
they would have given wrong results (as opposed to just being irrelevant). 
More complex schemes involving analysis of exactly what went wrong in ap- 
plying each rule would also be possible. 

There are several important points to be gleaned from the example in 
this section. Predictability provided significant control on the explanation 
process. We did not have to use brute force and try all the possible explana- 
tory rule sequences. If we had a more detailed knowledge of the domain 
with very specific explanatory rules, this would not be so important, but in a 
new domain, where rules are very general and perhaps contradictory, it is 
crucial. In addition, we can see how the SBL and EBL processes naturally 
complement each other. SBL gives us generalizations to explain and help 
control the explanation. The explanation, in addition to the main EBL pur- 
pose of detailed understanding, can be used to make further SBL processing 
more efficient. Among the many problems that need to be solved to make 
full use of this synergy are deciding when to apply EBL, how the interaction 
works when the explanations are more detailed than the one we used in our 
example, and how to use the internal features of a detailed explanation. 

5. FURTHER CONTROL-INTEREST 

Even having taken predictability into account, an EBL system will still have 
a large amount of work to do. We have the problem of deciding when to 
generalize, and the explanation process could still use further control. One 
way that people deal with both of these problems is to focus on instances 
that seem interesting to them, and the parts of the instances that are inter- 
esting. As pointed out in Lebowitz (1981), the interesting instances are ex- 
actly those that are likely to lead to successful learning. While we do not 
plan in this paper to present an entire theory of what makes something in- 
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teresting, we will: (a) define interest in a way that is useful for the task at 
hand; (b) describe in more detail how interest can be applied to our combi- 
nation of SBL and EBL; and (c) indicate the plausibility of determining in- 
terest. By necessity, our presentation will be somewhat general, hopefully 
stimulating further research in this important area. 

5.1 Defining Interest 

Saying that interesting instances and interesting parts of instances are useful 
in learning appears almost tautological. Some researchers have actually de- 
fined interest in terms of what helps in learning. Davis (1971) in a compara- 
tive philosophy of science study of what constitutes interesting sociological 
theories did just this. However, such an approach would not help us, as we 
would have to carry out the learning process before being able to apply in- 
terestingness. If we wish interest to be an active part of a computational 
model, we will have to assume that interest is a heuristic measure of what is 
likely to help in terms of learning. This is opposed to simply treating interest 
as a post hoc property of a memory structure. 

We will, then, make use of an intuitive feel for what makes something 
interesting. We will ultimately develop this into one or more heuristics for 
use in learning. This replaces an attempt to look for a guaranteed metric of 
what makes a good learning instance. 

5.2 Using Interest 

If we look back at STORYl, the DeJong kidnapping example, and at the 
various UNIMEM examples presented in this paper, we can see how interest 
can provide useful control. DeJong, for his kidnapping example, has already 
applied a set of heuristics which include a form of interest to decide that the 
story as a whole is interesting. Nonetheless, we could still apply the ideas of 
interest further. Specifically, to help further control the search process, we 
would want to limit the number of features in the story that we actively look 
at when generalizing features. This is particularly important if there is sig- 
nificant interaction among the various features we might generalize. So, 
while we certainly want to worry about the amount of money being extorted 
by the kidnapper from the businessman (it is expected to be large, but not 
exactly one million francs), we might not worry about the details of the 
communication between the kidnapper and his victim (of course, some peo- 
ple might-interest being idiosyncratic). It is not that we would then assume 
the communication must be by telegram, but rather we would generalize the 
form of communication without doing a detailed feasibility analysis. This is 
because our heuristics presumably show that the amount of money is inter- 
esting, while the form of communication is not. If the form of communica- 
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tion was of interest, we might analyze further to discover that it is important 
that the communication not be face-to-face. 

For the UNIMEM example in Figure 2, we have two potential ways to 
apply interest. Unlike DeJong’s program, but common to the state of many 
learning domains, we do not have a straightforward set of heuristics to tell 
us when to apply EBL. So, we will want to make use of interest. Actually, 
the fact that we are looking at generalizations instead of instances is one ap- 
plication of interest-we are assuming that generalizations are more inter- 
esting (because they are more reliable) than individual instances. The second 
application of interest would be, as in the DeJong example, to decide how 
to focus the EBL process. 

5.3 Determining Interest 

It clearly makes little sense to discuss the heuristic use of interest if we can- 
not hope to measure it in a computationally feasible way. While we will not 
look formally at the components of a heuristic measure of interest in this 
paper, we will indicate why we consider the computation of such a measure 
plausible. 

In the work done on the use of interest in learning, probably the most 
complete description of an interest measure is that of Lenat for two pro- 
grams that learn by discovery, AM (Lenat, 1982) and Eurisko (Lenat, 1983). 
Associated with each concept in the programs (both initial and derived) is a 
“worth” level-a number that specifies how likely it is that further explora- 
tion will find more useful concepts. These values can change as the universe 
of concepts change. Each concept also has an “interest” slot that indicates 
how to determine the worth of new concepts formed using the given concept 
(e.g., the “compose” concept’s interest slot shows how to find the worth of 
concepts formed by composing functions.) 

Lenat’s interest heuristics are rather specialized for the domains at 
hand, mathematics in AM’s case. While the work on Eurisko involving 
heuristics that modify heuristics may help in this regard, we prefer to look 
for simpler, more general heuristics that depend for their power on the rich- 
ness of our memory structures. This will be particularly important for EBL 
systems that make use of complex knowledge bases. 

Schank (1979) and Lebowitz (1981) have discussed the applicability of 
interest in relation to complex memory structures. In Lebowitz (1981) we in- 
dicated that various properties such as relevance and novelty do make the 
determination of interest computationally feasible (in particular, by focusing 
on heuristics that indicate when a concept is not interesting). Several interest 
heuristics based on the ideas of relevance and novelty used in Lebowitz 
(1981) would be applicable for deciding which generalizations to analyze. 
We would want to concentrate on generalizations that describe a number of 
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instances, rather than just a few, and perhaps those that involve an unusual 
set of features. In addition, we would prefer generalizations that organize 
other generalizations, as they have wider applicability. So, looking back at 
Figure 2, we would be more interested in GENS than GEN6 since it describes 
more instances (as well as having a number of more specific generalizations). 
Should it turn out that GEN6 is the only generalization involving congress- 
men voting “yes” on the food stamp cap bill and “no” on the Chrysler 
bailout, then it would be more interesting, because it is novel. Note that this 
is just what we want, since new combinations of features are likely to lead to 
new concepts. 

Interest rules for deciding which features of a generalization to focus 
the explanation process on would be similar. We would tend to focus on ex- 
plaining features that are novel, but not too novel. Novel, since otherwise 
we can presumably just use existing explanations, but not too novel, since 
we want to relate the explanations and generalizations that we derive to 
other parts of our knowledge base. 

Note that the interest heuristics described here, as well as most of the 
others one can think of (at least those that do not use pre-existing domain 
knowledge), crucially depend on having a sizeable number of instances in 
memory, and hence indicate a connection between SBL and EBL. If we 
were developing a learning system with user-imposed outside interests (e.g., 
“be interested in votes about defense”), we could combine these interests 
with the more general heuristics to develop a system that makes generaliza- 
tions that are relevant to a specific user. 

To recapitulate, interest is a very intuitive idea that leads to many use- 
ful processing heuristics. If we apply these heuristics to the learning process, 
they will help focus processing on the items that accelerate learning most ef- 
ficiently. We need not have a detailed understanding of why each heuristic 
helps the learning process to make use of interest. Although we are only 
proposing methods of applying interest at this point in time, we feel that the 
use of robust interest heuristics will be crucial in building large learning sys- 
tems that combine SBL and EBL methods. 

6. CONCLUSION 

EBL methods hold the promise of developing learning systems that can 
make full use of the knowledge they already possess. However, it is neces- 
sary to relate these methods to SBL techniques so that our systems can not 
only make use of a priori knowledge, but also use similarities noticed among 
large numbers of instances. This is particularly important in domains lack- 
ing detailed domain knowledge. We have described in this paper a three step 
plan involving: 
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l Applying EBL to generalizations derived by noticing similarities, in- 
stead of to individual instances. 

l Using interest to determine when to learn. 
l Using predictability to help control an otherwise unmanageable ex- 

planation process. 

The integration of EBL and SBL methods can lead to robust learning 
systems that can both make use of existing knowledge and process large 
numbers of instances. This will help our systems deal with realistic, noise 
data (Lebowitz, 1982, 1983b). There are many issues to be addressed, some 
of which we have suggested in this paper, on the road to learning systems 
that approach the power of human learners. 
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