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Abstract

An introduction to groups automorphisms, endomorphisms, charac-
teristic and fully invariant subgroups, commutators and their subgroups,
and centers.

1 Some sample groups
1 2

Consider a line with labeled ends. <@ @ There are two

things we can do to it while leaving the line in place. We can ”do nothing”

(think of adding zero to a number) and we can flip the line. (Or rotate it 180
2 1

degrees, with the same effect.) <@ € We can combine
these operations, although the only interesting combination is flipping the line
twice, which gives us the original figure. We can make a multiplication table of

the operations:
do nothing flip I s

do nothing original flipped or T I ] s
flip flipped original sl s| T

Not very exciting. But consider an equilateral triangle cutout, pinned to
some cardboard, so you can rotate it. There are two other positions leaving the
triangle in place, corresponding to rotations of 120 and 240 degrees.

2 3
3 1 1 2

rotation 120 degrees (s) rotation 240 degrees (s"2)




If we call the rotations s and s? and ”do nothing” I we can make the following
table, whose values the reader should be able to verify:

2

| I ]s]s
I I]s]s?
s || s || T
2|2 | T s

Similarly we can make regular polygons with any number of sides, and con-
sider their rotations, keeping the outline of the figure constant. We can also
extend the idea to a circle with a mark somewhere on it; there are infinitely
many rotations in this case, giving us a group with an (uncountable) infinite
number of members. These groups are called cyclic, or Cyc,' where ,, is the
number of sides. So our first group is C'ycs, the triangle C'ycs, the square Cycy,
and so on.

The next step is to take the polygons, in our case the triangle, off the card-
board. Now we can not only rotate them, but we can flip them around an axis,
giving us three new states (and operations to generate the states.)

Flip or reflection around the top vertex (t)

Flip or reflection around the left vertex (1)

!

\

Flip or reflection around the right vertex (r)

1More commonly known as Cy, or Z,, due to Z being a name for the integers. This is all
part of the tendency for any field of mathematics to adopt the Roman and Greek alphabets
for its own exclusive use, which is fine as long as you don’t try to change fields. As I am a
generalist writing for generalists, I strive for a larger namespace. Judging by the diversity of
the group theory books I have looked at, choosing my own notation is no great act of rebellion.



And we get an expanded multiplication table:

| I ]s s8]t ] 1]
I T s]s2]t l T
sl s || T]r]|t]1
s s2| I s l r t
t ¢ 1| r|T]s|s?
l Il r ]t |2 T] s
rllr |t 1] s|s2]1T

Notice something different here: s followed by ¢ gives r, but ¢ followed by
s is I. Unlike the previous groups, or the arithmetic we learn as children, the
rotations and reflections of the triangle, simple though this group is, are not
commutative. Some elements (s, s?) commute with each other, but only the
identity element I commutes (trivially) with everything in the group. Also note
that while we defined all three flips of the triangle, in a real sense we only need
one. We started out being able to rotate the triangle; given the ability to flip it
on its back, we can keep on rotating, and reach all of the configurations of the
other flips. As illustration here’s a table where [ has been replaced by ts and r
by st.

| I | s |s*|t|ts]st
T T]|s|s2|¢t]|ts]st
S s | 2] T |st] t|ts
s 2] T ] s |ts]st

t t |ts | st | I s | §2
ts [ ts | st | ¢t |2 T s
st |st| t |ts| s |s2]|1T

For comparsion, look at the table for Cycg, the rotations of the hexagon
(chosen for having the same number of elements):

SR N
T T]s |s?2]s3]s*]s
s s |28t T
S22 | T s
S| s3|s* P T | s |s?
st st || T | s |s?]s®
S|P T | s|s2]s3]s?

If you flip this table (or those of the other Cyc groups) around a diagonal
from the top left to the bottom right, you get the same table, which is not the
full table of the triangle.

Just as we can look at the rotations of any polygon, we can look at the
rotations—+flips of any polygon. This class of groups is known as dihedral (”two-
faced”) groups, or Dih,,% and the full group of the triangle is Dihs.

2Usually D,,.




There’s something else we can learn from the triangle. Look at the sequence
of numbers of each triangle figure, starting from the top vertex and going coun-
terclockwise. The first three, the members of Cycs, give (1,2,3), (2,3,1), and
(3,1,2) — (1,2,3) on a cyclic conveyor belt. The other three give us (1,3,2), (3,2,1)
and (2,1,3). Together the six sequences form all the possible permutations of
three elements. This is actually a coincidence, given how we defined the group;
in general Dih,, has 2n elements — n rotations and n flips — while permutations
have n! n! elements. But the permutations of n elements do in fact constitute
a group Perm,,> and it just happens that Perms equals Dihs.

2 Abstraction of Groups

So why are we calling these things ”groups”, anyway? Technically, a group is a
set of elements and an operation on the set, which takes two elements and returns
a third. (Also called binary operation.) There’s closure — take two elements,
operate, and you get another element, not something else. There’s associativity
— the order of a sequence operations matters, as we’ve seen with Dihg, but
given a sequence it doesn’t matter how you group them. a(bc) = (ab)c. And
groups have an identify element, and a unique inverse for every element. All
of the groups we’ve seen have these properties — closure, identity, and for every
element there’s some element such that when you combine them you get the
identity. tt =1I. ss2 = 1.

Note that technically, the group of Dihs, say, isn’t the set of positions of the
triangle, it’s the set of the motions of the triangle, and the group operation is
simply that of doing one operation after another, with the result being whichever
motion would have given the current position of the triangle. The labels s and ¢
can applied both to positions of the triangle and to the motions which produce
the positions; the set of group elements is actually the motions.

The ideas here can be made more general and more specific. Semi-groups
just have closure and associativity; think of an arbitrary graph. There are
also rings and fields, as well as other categories, which are groups with more
constraints on them. But I won’t go into details about those.

3 Applying the abstraction; More Groups

For a very different example, consider the set of integers, the binary operation
of addition. (Here the group elements aren’t motions, they’re just numbers!)
We have closure — integers + integer gives an integer. We've got an identity,
zero. And every postive number n has an inverse, which is —n, and vice versa.

3Usually S,,, for ”symmetric group. So why aren’t T calling it Symm,,? Because then ’d
have to say why it’s called symmetric, and I can’t. It’s not obviously symmetric, and Douglas
Hofstadter, who aimed at visualization and intuitive understanding, skipped this. The books
mumble about ”symmetric polynomials”, which work, but have no obvious motivation.

But the books clearly and early define S, as the group of permutations of n elements, so I
may as well call it that.



Voila, it’s a group! A commutative * one, too. The fractions under addition
and the reals under addition also are groups.

The fractions or the reals, not including zero, under multiplication, are also
groups. Here the identify is 1, and inverses are reciprocals. We have to exclude
zero, since it has no inverse, and the integers aren’t a group — they’re closed
under multiplication, but you need fractions to get inverses. They’d be another
example of a semi-group which wasn’t a group, though.

We also find that the even integers under addition are a group. Or the
multiples of three, or four, or any integer. So the even integers are a subset of
the integers, but a self-contained group under the same group operation. We
call this a subgroup, a group which is contained within another. Similarly the
positive fractions (or reals) are a subgroup of all the non-zero fractions (or reals)
under multiplication. And going back to our earlier examples, we can see that
Cycs is a subgroup of Dihg, as are {I,t},{I,l}, {Ir}. Cyce has the subgroups
{1, %}, {1,5%, 5.

We can also see that just as a single flip of the triangle expanded the range
of positions, from the three rotations to the 6 rotations+reflections, just adding
-1 to the group of the positive fractions under multiplication doubles the size of
the group, bringing in all the negative fractions. (And likewise for the reals.)
Ditto for adding 1 to the even integers under addition.

4 Non-Groups

In learning a new category it helps to have examples of things not in it, as
well as things that are. So what are things which might look like groups but
aren’t, and why? As we’ve already touched upon, all the fractions or reals under
multiplication aren’t a group, because zero has no inverse. The integers under
multiplication aren’t either, for the different reason that no integer except 1
and -1 has an inverse under multiplication. The negative numbers under mul-
tiplication aren’t; no identity or inverse, plus it’s not closed. The non-negative
numbers under addition lack inverses; the positive numbers under addition also
lack an identity. The integers under division lack closure (or, depending on how
you look at it, a fully defined operation.) Numbers under absolute value aren’t;
absolute value isn’t even a binary operation.

5 Mappings and ’Morphisms

An automorphism is an isomorphism of a group to itself. An isomorphism is
a 1-1 homomorphism. A homomorphism is a mapping which preserves group
structure.

Let us work our way back up. A group is a set of elements and an op-
eration upon them; a mapping is simply that, a map from the set of group
elements to some other set, or in general a map of any set to another set, as

40r abelian, after the mathematician Abel



long as each element in the first set is mapped to only one element in the
second. One could map the group of the triangle Dihs, {I,s,s? t, 1,7} to
{cat, dog,icecream, monkey, 4,2} quite legitimately, although there would be
little obvious reason to do so. 3 Usually we map the group elements to the set
of elements of another group, and in particular we usually require homomor-
phism: preserving group structure. The identity of one group should map to
the identity of the second group; pairs of inverses in the first group should map
to pairs of inverses in the second group; elements which commute should map
to elements which commute. This is captured by

$(a)¢(b) = p(ab)

where ¢ is the mapping under consideration. We can see that this does express
the conditions above:

¢(z) = ¢(Iz) = ¢(I)¢(x)
50 ¢(I) must be the identity of the second group. And
o(I) = g(ez™") = d(z)p(z™)
so ¢(z~!) must equal ¢(x)~!. Finally
ab =ba
f(ab) = f(ba)
f(@)f(b) = f(b)f(a)

Then an endomorphism is a homomorphism of a group to itself, e.g. mapping
{I, 5,5} of Dih3 to {I} and the other three elements to {t}. An isomorphism
is a homomorphism which is one-to-one, and an automorphism is a one-to-one
isomorphism, e.g mapping {I, s, s%,t,1,7} to {I,s%,s,t,r,1}

Sample mappings

generic *s homom. (into Cyc®) endomorphic automorphic *g g lzg

I cat s I I I T Izl
S dog s? I I s s s?xs
52 4 I I I 52 xzs?  sxs?
t s l 53 t l xt txt
l s r 83 t T xl Izl

T 4 t 83 t t xr rIT

5There’s a reason I emphasize this arbitrary nature of mappings. Automorphisms are a
class of mappings of a group to itself which obey certain constraints, and it can be hard to find
all the automorphisms just by looking for natural operations. There is always the option of
generating all possible mappings and checking each one for satisfaction of the constraints. The
same holds for homomorphisms between groups: one could always set up a generic mapping
and check the homomorphism equation. This isn’t an ideal option, but it’s there.



6 Cosets and Normal Subgroups

A subgroup N of a group G is a subset of the set of elements of G (in which
the group relations still hold.) If we multiply the elements of N by an element
a not in N we get a set of products, distinct from N, and of the same size as
N. This set is called a coset. If there are elements not in N or the coset we
can multiply NV by one of those and get a new coset, distinct from the first two
sets. In general it matters which side we multiply on: aN # Na. If aN = Na,
(meaning not that individual products are equal, but that the set of products
are equal), then N is called normal or invariant. This is equivalent to being
self-conjugating, where g"'Ng = N, i.e. g~'n;g = no where n; and n, are
members of N. (See bottom of I)

Tlustration: given Dihs, one subgroup is I, s,s2. We can multiply on the
right by ¢, which is not in the subgroup, and get ¢, st, s>t = ts. Or on the left
to get t,ts,ts2 = st. In this case it’s the same coset, permuted a bit. If we
multiply by st we get the same set: st, st = ts,s%t = t. On the other hand, we
can consider the subgroup I,t and multiply by s to get s,ts on right and s, st
on the left. Not the same cosets. So I, s, s? is a normal subgroup of Dihs, with
a coset of t, st, s*t, while I, (or I,1 and I,r) isn’t a normal subgroup.

We could also have looked at conjugation, e.g. tIt = I,tst = s2,ts%t = s,
and this is true for conjugation by any element in Dihs.

7 Examples of Automorphisms

The familiar operation of conjugation g~ 'zg is an automorphism. It obviously
maps group elements to other group elements; it is one-to-one (if you assume
otherwise, that  # y but g 'xg = g~ lyg, you find that g and its inverse cancel
and that z = y, contradicting your assumption.) And it is a homomorphism:

Conj(z)Conj(y) = g 'zgg 'yg = g 'zyg = Conj(zy)

Conjugations are also called inner automorphisms.
Of course for commutative groups conjugates are not very interesting: g~ 'zg =
g gz = x. But there is another operation which is an automorphism for these
groups: mapping elements to their own inverses. Inverses are unique, so this is
1-1, and
Inv(z)Inv(y) = 7'y~ !

Inv(zy) =y 'zt

1 1

but the group commutes, so z71y~! = y~l2~! and Inv(z)Inv(y) = Inv(zy)
One automorphism of a group can be followed by another, yielding a third
automorphism. Since automorphisms are one-to-one they have inverses, and
there is the identity automorphism of mapping every group element to itself,
so the set of automorphisms of a group is itself a set under the operation of
doing successive automorphism of the group. This group is called Aut, and has
a subgroup Inn of the conjugations, since the application of the homomorphism
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Mappings/Morphisms and their Subgroups

Figure 1: Mappings hierarchy

equation above shows that a conjugation followed by a conjugation is a conju-
gation. If we map each element g of G' to the conjugation g~'zg caused by that
element we have a homomorphic mapping from G to Inn(G).

8 Characteristic and Fully Invariant Subgroups

We have already seen that conjugations are automorphisms, and that normal
subgroups are self-conjugate, i.e. preserved by conjugations on the group. A
characteristic subgroup is one which is preserved by all automorphisms of the
group, and may be seen as a refinement of normal subgroups. To be clear, any
automorphism of G maps elements of the characteristic subgroup to a distinct
and possibly not the same element of that characteristic subgroup. The only
element which must map to itself is the identity, preserved by all homomor-
phisms.

In turn, fully invariant subgroups are mapped into themselves by all endor-
mophisms of the group. Note use of the word “into” here, as opposed to “onto”.
For example all groups have the trivial endormophism of mapping all elements
to the identity; this does not preserve subgroups the same way conjugation and
automorphisms preserve normal and characteristic subgroups. But an endor-
morphism will never map elements of a fully invariant subgroup to elements not
in the subgroup. We will see an example of such a subgroup in the section on
commutators.



9 Transitivity

Unlike normality, being characteristic or fully invariant subgroups is transitive.
If AC B C C and A is characteristic or fully invariant in B and likewise B is
characteristic or fully invariant in C then A is characteristic or fully invariant in
C'. By definition an automorphism of C maps B to itself (in the characteristic
case), and is thus in turn an automorphism of B, which by definition maps A
to itself. Similarly an endomorphism of C' maps a fully invariant B into itself,
which is an endomorphism of B, which will map A into itself.

The reason this does not work for normal subgroups is that while a conjuga-
tion of C' maps a normal B to itself, this mapping of B is only known to be an
automorphism of B, not a conjugation of C, and thus A normal in B may not be
preserved by the automorphism, and thus not be preserved by the conjugation
of C.

For example Z; is normal in Dy which is normal in Dy, but Z5 is not normal
in D4.

10 Commutators

The commutator of two group elements a and b is the group element ¢ such that
ab = bac. It can be thought of as that element which allows a and b to commute.
It may also be defined as Comm(a,b) = a~1b~ab; it should be easy to see that
this satisfies the role of ¢. It should also be clear from both definitions that if a
and b commute then ¢ is I, and Comm(a,b) will come out to be I. If the group
is abelian so that all pairs a, b commute then the only commutator is I and the
commutator subgroup is I. The reverse is also true.

Commutators are preserved by homomorphisms.

$la™'b7 ab) = p(a™ )P0 )p(a)$(b)

and remembering that homomorphisms map inverses to inverses we find

$(a) ™' (b) ™" ¢(a)$(b)

which is a commutator. So if the commutators and their products form a proper
subgroup of the group, all endomorphisms will preserve this subgroup, and so
it is fully invariant, characteristic, and normal.

The factor group of commutator subgroups is always abelian. It may help
to recall what the factor group is, namely where a normal subgroup is mapped
to the identity of some group and its cosets are mapped to the other elements
of that group. So multiplication in the factor group can be thought of as mem-
bership in cosets of the starting group. If NV is a normal subgroup of G, aN is
in one coset and bN is in another, then in general a NbN goes to one coset of
G, and bNaN may go to yet another. But not when N = C.

For multiplication of cosets to be commutative we need ab and ba to go
to the same coset, abC = baC, or in terms of concrete elements abc; = bacs.

10



But we can take ¢; to be I and get ab = bac, which is exactly the definition of
commutators! If that was too fast there is a longer derivation: aCbC = abCC =
abC = baCC = bCaC.

A third albeit currently less rigorous way of looking at it is that in making
the factor group we have gathered up all the commutators of G into C' and then
mapped them all to I. For the factor group to not be abelian one of the other
elements of G/C must be a commutator (if the only commutator is I the group
is abelian). But the pre-image of this commutator cannot be a commutator or
product of commutators in G, because those have all be mapped to I. Since
homomorphism preserves group structure one might suspect this might not be
the case. In a sense we have gathered all the non-commutativity of G into a
bag and then squished the bag.

O

abC
O @)
bC
aC
C
O
I?

11 Higher Order Commutator Subgroups

But while the factor group of C' is always abelian, C itself need not be, in which
case we can look for the commutators of C' and the subgroup in C they form;
such are called higher order commutator subgroups (also derived subgroups).
If the original group G is finite then this process must obviously terminate;
either we find a subgroup whose commutator subgroup is itself, or we reach an
abelian commutator subgroup whose own commutator subgroup is simply {I}.
For example the tetrahedral group A4 has a commutator subgroup isomorphic
to the 4-group, which is abelian. Conversely the icosahedral group Ay has no
(proper) normal subgroups whatsoever, and its commutator subgroup is As.
This gets within sight of the unsolvability of the quintic, via results which
this paper can only mention lightly. ‘Solvable’ groups are ones which have a

11



chain of subgroups, each normal in the next larger subgroup, each with an
abelian factor group, with the chain terminating in I. Aj corresponds to some
quintic equation, and is not solvable, having no normal subgroups to even start
a chain.

12 Centers

The center of a group is the set of group elements which commute with every
element in the group. Not to be confused with the commutators, which make
two elements commute, but needn’t themselves commute with anything. A
central element ¢ obviously obeys gc = cg for all group elements g. The center
is a subgroup: gcica = c19ca = cicag, so the product of two central elements
is itself a central element. And the inverse of a central element also commutes
with everything:
ge ' =h

g =hc

g=ch
clg=h=gc™?

The center is another example of a fully invariant subgroup, as commutativ-
ity is preserved by a homomorphism.

If a group is commutatative, the center is the whole group (all elements
commute with everything) and the commutator subgroup is {I}. Otherwise the
center will be a proper subgroup (possibly) {I} and the commutator subgroup
will be a non-trivial subgroup (and possibly the whole group.)
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