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Abstract 

Research is reviewed that addresses itself to human language learning by de- 
veloping precise, mechanistic models that are capable in principle of acquir- 
ing languages on the basis of exposure to linguistic data. Such research in- 
cludes theorems on language learnability from mathematical linguistics, com- 
puter models of language acquisition from cognitive simulation and artificial 
intelligence, and models of transformational grammar acquisition from theor- 
etical linguistics. It is argued that such research bears strongly on major issues 
in developmental psycholinguistics, in particular, nativism and empiricism, 
the role of semantics and pragmatics in language learning, cognitive devel- 
opment, and the importance of the simplified speech addressed to children. 

I. Introduction 

How children learn to speak is one of the most important problems in the 
cognitive sciences, a problem both inherently interesting and scientifically 
promising. It is interesting because it is a species of the puzzle of induction: 
how humans are capable of forming valid generalizations on the basis of a 
finite number of observations. In this case, the generalizations are those that 
allow one to speak and understand the language of one’s community, and are 
based on a finite amount of speech heard in the first few years of life. And 
language acquisition can claim to be a particularly promising example of this 

*I am grateful to John Anderson, Roger Brown, Michael Cohen, Martha Danly, Jill de Villiers, 
Nancy Etcoff, Kenji Hakuta, Reid Hastie, Stephen Kosslyn, Peter Kugel, John Macnamara, Robert 
Matthews, Laurence Miller, Dan Slobin, and an anonymous reviewer for their helpful comments on 
earlier drafts of this paper. Preparation of this paper was supported in part by funds from the Depart- 
ment of Psychology and Social Relations, Harvard University; the author was supported by NRC and 
NSERC Canada Postgraduate Scholarships and by a Frank Knox Memorial Fellowship. 
**Reprints may be obtained from the author, who is now at the Center for Cognitive Science, Massa- 

chusetts Institute of Technology, Cambridge, MA 02139. 



2 18 Steven Pinker 

puzzle, promising to the extent that empirical constraints on theory con- 
struction promote scientific progress in a given domain. This is because any 
plausible theory of language learning will have to meet an unusually rich set 
of empirical conditions. The theory will have to account for the fact that all 
normal children succeed at learning language, and will have to be consistent 
with our knowledge of what language is and of which stages the child passes 
through in learning it. 

It is instructive to spell out these conditions one by one and examine the 
progress that has been made in meeting them. First, since all normal children 
learn the language of their community, a viable theory will have to posit 
mechanisms powerful enough to acquire a natural language. This criterion 
is doubly stringent: though the rules of language are beyond doubt highly 
intricate and abstract, children uniformly succeed at learning them nonethe- 
less, unlike chess, calculus, and other complex cognitive skills. Let us say that 
a theory that can account for the fact that languages can be learned in the first 
place has met the Learnability Condition. Second, the theory should not ac- 
count for the child’s success by positing mechanisms narrowly adapted to 
the acquisition of a particular language. For example, a theory positing an 
innate grammar for English would fail to meet this criterion, which can be 
called the Equipotcntiality Condition. Third, the mechanisms of a viable 
theory must allow the child to learn his language within the time span nor- 
mally taken by children, which is in the order of three years for the basic 
components of language skill. Fourth, the mechanisms must not require as 
input types of information or amounts of information that are unavailable 
to the child. Let us call these the Time and Input Conditions, respectively. 
Fifth, the theory should make predictions about the intermediate stages of 
acquisition that agree with empirical findings in the study of child language. 
Sixth, the mechanisms described by the theory should not be wildly incon- 
sistent with what is known about the cognitive faculties of the child, such as 
the perceptual discriminations he can make, his conceptual abilities, his mem- 
ory, attention, and so forth. These can be called the Developmental and 
Cognitive Conditions, respectively. 

It should come as no surprise that no current theory of language learning 
satisfies, or even addresses itself to, all six conditions. Research in psychology 
has by and large focused on the last three, the Input, Developmental, and 
Cognitive Conditions, with much of the research directed toward further 
specifying or articulating the conditions themselves. For example, there has 
been research on the nature of the speech available to children learning lan- 
guage (see Snow and Ferguson, 1977), on the nature of children’s early word 
combinations (e.g., Braine, 1963), and on similarities between linguistic and 
cognitive abilities at various ages (e.g., Sinclair-de Zwart, 1969). Less often, 
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there have been attempts to construct theoretical accounts for one or more 
of such findings, such as the usefulness of parental speech to children (e.g., 
Newport, Gleitman, and Gleitman, 1977), the reasons that words are put 
together the way they are in the first sentences (e.g., Brown, 1973; Schle- 
singer, 1971), and the ways that cognitive development interacts with lin- 
guistic development (e.g., Slobin, 1973). Research in linguistics that has 
addressed itself to language learning at all has articulated the Equipotentiality 
Condition, trying to distinguish the kinds of properties that are universal 
from those that are found only in particular languages (e.g., Chomsky, 1965, 
1973). 

In contrast, the attempts to account for the acquisition of language itself 
(the Learnability Condition) have been disappointingly vague. Language 
Acquisition has been attributed to everything from “innate schematisms” to 
“general multipurpose learning strategies”; it has been described as a mere 
by-product of cognitive development, of perceptual development, of motor 
development, or of social development; it has been said to draw on “input 
regularities”, “semantic relations”, “perceived intentions”, “formal causal- 
ity”, “pragmatic knowledge”, “action schema?‘, and so on. Whether the 
mechanisms implicated by a particular theory are adequate to the task of 
learning human languages is usually left unanswered. 

There are, however, several bodies of research that address themselves to 
the Learnability criterion. These theories try to specify which learning mech- 
anisms will succeed in which ways, for which types of languages, and with 
which types of input. A body of research called Grammatical Induction, 
which has grown out of mathematical linguistics and the theory of compu- 
tation, treats languages as formal objects and tries to prove theorems about 
when it is possible, in principle, to learn a language on the basis of a set of 
sentences of the language. A second body of research, which has grown out 
of artificial intelligence and cognitive simulation, consists of attempts to 
program computers to acquire languages and/or to simulate human language 
acquisition. In a third research effort, which has grown out of transforma- 
tional linguistics, a learning model capable of acquiring a certain class of 
transformational grammars has been described. However, these bodies of 
research are seldom cited in the psychological literature, and researchers in 
developmental psycholinguistics for the most part do not seem to be familiar 
with them. The present paper is an attempt to remedy this situation. I will 
try to give a critical review of these formal models of language acquisition, 
focusing on their relevance to human language learning. 

There are two reasons why formal models of language learning are likely 
to contribute to our understanding of how children learn to speak, even if 
none of the models I will discuss satisfies all of our six criteria. First of all, 
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a theory that is powerful enough to account for thej&ct of language acquisition 
may be a more promising first approximation of an ultimately viable theory 
than one that is able to describe the course of language acquisition, which 
has been the traditional focus of developmental psycholinguistics. As the 
reader shall see, the Learnability criterion is extraordinarily stringent, and it 
becomes quite obvious when a theory cannot pass it. On the other hand, 
theories concerning the mechanisms responsible for child language per se 
are notoriously underdetermined by the child’s observable linguistic behavior. 
This is because the child’s knowledge, motivation, memory, and perceptual, 
motor, and social skills are developing at the same time that he is learning 
the language of his community. 

The second potential benefit of formal models is the explicitness that they 
force on the theorist, which in turn can clarify many conceptual and sub- 
stantive issues that have preoccupied the field. Despite over a decade and a 
half of vigorous debates, we still do not know that sort of a priori knowledge, 
if any, is necessary to learn a natural language; nor whether different sorts of 
input to a language learner can make his task easy or difficult, possible or 
impossible; nor how semantic information affects the learning of the syntax 
of a language. In part this is because we know so little about the mechanisms 
of language learning, and so do not know how to translate vague terms such 
as “semantic information” into the information structures that play a causal 
role in the acquisition process. Developing explicit, mechanistic theories of 
language learning may be the only way that these issues can be stated clearly 
enough to evaluate. It seems to be the consensus in other areas of cognitive 
psychology that mechanistic theories have engendered enormous conceptual 
advances in the understanding of mental faculties, such as long-term memory 
(Anderson and Bower, 1973), visual imagery (Kosslyn and Schwartz, 1977), 
and problem solving (Newell and Simon, 1973). 

The rest of the paper is organized into eight sections. In Section II, I will 
introduce the vocabulary and concepts of mathematical linguistics, which 
serve as the foundation for research on language learnability. Sections III and 
IV present E. Gold’s seminal theorems on language learnability, and the sub- 
sequent research they inspired. Section V describes the so-called “heuristic” 
language learning models, several of which have been implemented as com- 
puter simulations of human language acquisition. Sections VI and VII discuss 
the rationale for the “semantic” or “cognitive” approach to language learning, 
focusing on John R: Anderson’s computer simulation of a semantics-based 
learner. Section VIII describes a model developed by Henry Hamburger, 
Kenneth Wexler, and Peter Culicover that is capable of learning transforma- 
tional grammars for languages. Finally, in Section IX, I discuss the implica- 
tions of this research for developmental psycholinguistics. 



Formal models of language learning 22 1 

II. Formal Models of Language 

In this section I define the elementary concepts of mathematical linguistics 
found in discussions of language learnability. More thorough accounts can be 
found in Gross (1972) and in Hopcroft and Ullman (1969). 

Languages and Grammars 
To describe a language in mathematical terms, one begins with a finite set 
of symbols, or a vocabulary. In the case of English, the symbols would be 
English words or morphemes. Any finite sequence of these symbols is called 
a string, and any finite or infinite collection of strings is called a language. 
Those strings in the language are called sentences; the strings not in the lan- 
guage are called non-sentences. 

Languages with a finite number of sentences can be exhaustively described 
simply by listing the sentences. However, it is a celebrated observation that 
natural and computer languages are infinite, even though they are used by 
beings with finite memory. Therefore the languages must have some finite 
characterization, such as a recipe or program for specifying which sentences 
are in a given language. A grammar, a set of rules that generates all the sen- 
tences in a language, but no non-sentences, is one such characterization. Any 
language that can be generated by a set of rules (that is, any language that is 
not completely arbitrary) is called a recursively enumerable language. 

A grammar has four parts. First of all, there is the vocabulary, which will 
now be called the terminal vocabulary to distinguish it from the second com- 
ponent of the grammar, called the auxiliary vocabulary. The auxiliary vocab- 
ulary consists of another finite set of symbols, which may not appear in 
sentences themselves, but which may act as stand-ins for groups of symbols, 
such as the English“noun”, “verb”, and “prepositional phrase”. The third 
component of the grammar is the finite set of rewrite rules, each of which 
replaces one sequence of symbols, whenever it occurs, by another sequence. 
For example, one rewrite rule in the grammar for English replaces the symbol 
“noun phrase” by the symbols “article noun”; another replaces the symbol 
“verb” by the symbol “grow”. Finally, there is a special symbol, called the 
start symbol, usually denoted S, which initiates the sequence of rule opera- 
tions that generate a sentence. If one of the rewrite rules can rewrite the “S” 
as another string of symbols it does so; then if any rule can replace part or 
all of that new string by yet another string, it follows suit. This procedure 
continues, one rule taking over from where another left off, until no auxiliary 
symbols remain, at which point a sentence has been generated. The language 
is simply the set of all strings that can be generated in this way. 
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Classes of Languages 
There is a natural way to subdivide grammars and the languages they gener- 
ate into classes. First, the grammars of different sorts of languages make use 
of different types of rewrite rules. Second, these different types of languages 
require different sorts of computational machinery to produce or recognize 
their sentences, using various amounts of working memory and various ways 
of accessing it. Finally, the theorems one can prove about language and gram- 
mars tend to apply to entire classes of languages, delineated in these ways. 
In particular, theorems on language learnability refer to such classes, so I will 
discuss them briefly. 

These classes fall into a hierarchy (sometimes called the Chomsky hierar- 
chy), each class properly containing the languages in the classes below it. I 
have already mentioned the largest class, the recursively enumerable languages, 
those that have grammars that generate all their member sentences. However, 
not all of these languages have a decision procedure, that is, a means of deter- 
mining whether or not a given string of symbols is a sentence in the language. 
Those that have decision procedures are called decidable or recursive lan- 
guages. Unfortunately, there is no general way of knowing whether a recur- 
sively enumerable language will turn out to be decidable or not. However, 
there is a very large subset of the decidable languages, called the primitive 
recursive languages, whose decidability is known. It is possible to enumerate 
this class of languages, that is, there exists a finite procedure called agram- 
mar-grammar capable of listing each grammar in the class, one at a time, 
without including any grammar not in the class. (It is not hard to see why 
this is impossible for the class of decidable languages: one can never be sure 
whether a given language is decidable or not.) 

The primitive recursive languages can be further broken down by restrict- 
ing the form of the rewrite rules that the grammars are permitted to use. 
Context-sensitive grammars contain rules that replace a single auxiliary sym- 
bol by a string of symbols whenever that symbol is flanked by certain neigh- 
boring symbols. Context-free grammars have rules that replace a single auxil- 
iary symbol by a string of symbols regardless of where that symbol occurs. 
The rules of finite state grammars may replace a single auxiliary symbol only 
by another auxiliary symbol plus a terminal symbol; these auxiliary symbols 
are often called states in discussions of the corresponding sentence-producing 
machines. Finally, there are grammars that have no auxiliary symbols, and 
hence these grammars can generate only a finite number of strings altogether. 
Thus they are called finite cardinality grammars. This hierarchy is summarized 
in Table 1, which lists the classes of languages from most to least inclusive. 
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Table 1. Classes of Languages 

Class 

Recursively Enumerable 

Decidable (Recursive) 

Primitive Recursive 

Context-Sensitive 

Context-Free 

Finite State 

Finite Cardinality 

Learnable from 

an informant? 

Learnable from Contains natural 

a text? languages? 

no 
no 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

yes* 
? 

? 

? 

no 

no 

yes 

no 

no 

no 

*by assumption. 

Natural Languages 
Almost all theorems on language learnability, and much of the research on 
computer simulations of language learning, make reference to classes in the 
Chomsky hierarchy. However, unless we know where natural languages fall in 
the classification, it is obviously of little psychological interest. Clearly, 
natural languages are not of finite cardinality; one can always produce a new 
sentence by adding, say, “he insists that” to the beginning of an old sentence. 
It is also not very difficult to show that natural languages are not finite state: 
as Chomsky (1957) has demonstrated, finite state grammars cannot generate 
sentences with an arbitrary number of embeddings, which natural languages 
permit (e.g., “he works”, “either he works or he plays”, “if either he works 
or he plays, then he tires”, “since if either he...“, etc.). It is more difficult, 
though not impossible, to show that natural languages are not context-free 
(Gross, 1972; Postal, 1964). Unfortunately, it is not clear how much higher 
in the hierarchy one must go to accomodate natural languages. Chomsky and 
most other linguists (including his opponents of the “generative semantics” 
school) use transformational grammars of various sorts to describe natural 
languages. These grammars generate bracketed strings called deep structures, 
usually by means of a context-free grammar, and then, by means of rewrite 
rules called transformations, permute, delete, or copy elements of the deep 
structures to produce sentences. Since transformational grammars are con- 
structed and evaluated by a variety of criteria, and not just by the ability to 
generate the sentences of a language, their place in the hierarchy is uncertain. 
Although the matter is by no means settled, Peters and Ritchie (1973) have 
persuasively argued that the species of transformational grammar necessary 
for generating natural languages can be placed in the context-sensitive class, as 
Chomsky conjectured earlier (1965, p. 61). Accordingly, in the sections fol- 
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lowing, I will treat the set of all existing and possible human languages as a 
subset of the context-sensitive class. 

III. Grammatical Induction: Gold’s Theorems 

Language Learning as Grammatical Induction 
Since people presumably do not consult an internal list of the sentences of 
their language when they speak, knowing a particular language corresponds 
to knowing a particular set of rules of some sort capable of producing and 
recognizing the sentences of that language. Therefore learning a language 
consists of inducing that set of rules, using the language behavior of the com- 
munity as evidence of what the rules must be. In the paragraphs following I 
will treat such a set of rules as a grammar. This should not imply the belief 
that humans mentally execute rewrite rules one by one before uttering a sen- 
tence. Since every grammar can be translated into a left-to-right sentence 
producer or recognizer, “inducing a grammar” can be taken as shorthand for 
acquiring the ability to produce and recognize just those sentences that the 
grammar generates. The advantage of talking about the grammar is that it 
allows us to focus on the process by which a particular language is learned 
(i.e., as opposed to some other language), requiring no commitment as to 
the detailed nature of the production or comprehension process in general 
(i.e., the features common to producers or recognizers for all languages). 

The most straightforward solution to this induction problem would be to 
find some algorithm that produces a grammar for a language given a sample 
of its sentences, and then to attribute some version of this algorithm to the 
child. This would also be the most gerzeral conceivable solution. It would not 
be necessary to attribute to the child any a priori knowledge about the par- 
ticular type of language that he is to learn (except perhaps that it falls into 
one of the classes in the Chomsky hierarchy, which could correspond to some 
putative memory or processing limitation). We would not even have to attri- 
bute to the child a special language acquisition faculty. Since a grammar is 
simply one way of talking about a computational procedure or set of rules, 
an algorithm that could produce a grammar for a language from a sample of 
sentences could also presumably produce a set of rules for a different sort of 
data (appropriately encoded), such as rules that correctly classify the exem- 
plars and non-exemplars in a laboratory concept attainment task. In that 
case it could be argued that the child learned language via a general induction 
procedure, one that simply “captured regularity” in the form of computa- 
tional rules from the environment. 
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Unfortunately, the algorithm that we need does not exist. An elementary 
theorem of mathematical linguistics states that there are an infinite number 
of different grammars that can generate any finite set of strings. Each gram- 
mar will make different predictions about the strings not in the set. Consider 
the sample consisting of the single sentence “the dog barks”. It could have 
been taken from the language consisting of: 1) all three-word strings; 2) all 
article-noun-verb sequences; 3) all sentences with a noun phrase; 4) that sen- 
tence alone; 5) that sentence plus all those in the July 4, 1976 edition of the 
New York Times; as well as 6) all English sentences. When the sample consists 
of more than one sentence, the class of possible languages is reduced but is 
still infinitely large, as long as the number of sentences in the sample is finite. 
Therefore it is impossible for any learner to observe a finite sample of sen- 
tences of a language and always produce a correct grammar for the language. 

Language Identification in the Limit 
Gold (1967) solved this problem with a paradigm he called language identifi- 
cation in the limit. The paradigm works as follows: time is divided into 
discrete trials with a definite starting point. The teacher or environment 
“chooses” a language (called the target language) from a predetermined class 
in the hierarchy. At each trial, the learner has access to a single string. In one 
version of the paradigm, the learner has access sooner or later to all the sen- 
tences in the language. This sample can be called a text, or positive informa- 
tion presentation. Alternately, the learner can have access to both grammat- 
ical sentences and ungrammatical strings, each appropriately labelled. Because 
this is equivalent to allowing the learner to receive feedback from a native 
informant as to whether or not a given string is an acceptable sentence, it 
can be called informant or complete information presentation. Each time the 
learner views a string, he must guess what the target grammar is. This process 
continues forever, with the learner allowed to change his mind at any time. 
If, after a finite amount of time, the learner always guesses the same gram- 
mar, and if that grammar correctly generates the target language, he is said to 
have identified the language in. the limit. Is is noteworthy that by this defini- 
tion the learner can never know when or even whether he has succeeded. 
This is because he can never be sure that future strings will not force him to 
change his mind. 

Gold, in effect, asked: How well can a completely general learner do in 
this situation? That is, are there any classes of languages in the hierarchy 
whose members can all be identified in the limit? He was able to prove that 
language learnability depends on the information available: if both sentences 
and non-sentences are available to a learner (informant presentation), the 
class of primitive recursive languages, and all its subclasses (which include the 
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natural languages) are learnable. But if only sentences are available (text pre- 
sentation), no class of languages other than the finite cardinality languages is 
learnable. 

The proofs of these theorems are straightforward. The learner can use a 
maximally general strategy: he enumerates every grammar of the class, one 
at a time, rejecting one grammar and moving on to the next whenever the 
grammar is inconsistent with any of the sample strings (see Figure 1). With 
informant presentation, any incorrect’ grammar will eventually be rejected 
when it is unable to generate a sentence in the language, or when it generates 
a string that the informant indicates is not in the language. Since the correct 
grammar, whatever it-is, has a definite position in the enumeration of gram- 
mars, it will be hypothesized after a finite amount of time and there will 
never again be any reason to change the hypothesis. The class of primitive 
recursive languages is the highest learnable class because it is the highest class 
whose languages are decidable, and whose grammars and decision procedures 
can be enumerated, both necessary properties for the procedure to work. 

The situation is different under text presentation. Here, finite cardinality 
languages are trivially learnable - the learner can simply guess that the lan- 
guage is the set of sentences that have appeared in the sample so far, and 
when every sentence in the language has appeared at least once, the learner 
will be correct. But say the class contains all finite languages and at least one 
infinite language (as do classes higher than finite cardinality). If the learner 
guesses that the language is just the set of sentences in the sample, then when 
the target language is infinite the learner will have to change his mind an infi- 
nite number of times. But if the learner guesses only infinite languages, then 
when the target language is finite he will guess an incorrect language and will 
never be forced to change his mind. If non-sentences were also available, any 
overgeneral grammar would have been rejected when a sentence that it was 
capable of generating appeared, marked as a non-sentence. As Gold put it, 
“the problem with text is that if you guess too large a language, the sample 
will never tell you you’re wrong”. 

Implication of Gold’s theorems 
Do children learn from a text or an informant? What evidence we have 
strongly suggests that children are not usually corrected when they speak 
ungrammatically, and when they are corrected they take little notice (Braine, 
1971; Brown and Hanlon, 1970; McNeill, 1966). Nor does the child seem to 
have access to more indirect evidence about what is not a sentence. Brown 
and Hanlon (1970) were unable to discern any differences in how parents 
responded to the grammatical versus the ungrammatical sentences of their 
children. Thus the child seems to be in a text situation, in which Gold’s 
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Figure 1. A flowchart for Gold’s enumeration procedure. Note that there is no “stop” 
symbol; the learner samples strings and guesses grammars forever. If the 
learner at some point enters loop “A” and never leaves it, he has identified 
the language in the limit. 

0 A 

learner must fail. However, all other models must fail in this situation as 
well - there can be no learning procedure more powerful than the one that 
enumerates all the grammars in a class. 

An even more depressing result is the astronomical amount of time that 
the learning of most languages would take. The enumeration procedure, 
which gives the learner maximum generality, exacts its price: the learner 
must test astronomically large numbers of grammars before he is likely to hit 
upon the correct one. For example, in considering all the finite state gram- 
mars that use seven terminal symbols and seven auxiliary symbols (states), 
which the learner must do before going on to more complex grammars, he 
must test over a googol (1 OIOo) candidates. The learner’s predicament is remi- 
niscent of Jorge Luis Borges’s “librarians of Babel”, who search a vast library 
containing books with all possible combinations of alphabetic characters for 
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the book that clarifies the basic mysteries of humanity. Nevertheless, Gold 
has proved that no general procedure is uniformly faster than his learner’s 
enumeration procedure. This is a consequence of the fact that an infinite 
number of grammars is consistent with any finite sample. Imagine a rival pro- 
cedure of any sort that correctly guessed a certain language at an earlier trial 
than did the enumeration procedure. In that case the enumeration procedure 
must have guessed a different language at that point. But the sample of sen- 
tences up to that point could have been produced by many different grammars, 
including the one that the enumeration procedure mistakenly guessed. If the 
target language had happened to be that other language, then at that time 
the enumeration procedure would have been correct, and its rival incorrect. 
Therefore, for every language that a rival procedure identifies faster than the 
enumeration procedure, there is a language for which the reverse is true. A 
corollary is that every form of enumeration procedure (i.e., every order of 
enumeration) is, on the whole, equivalent in speed to every other one. 

Gold’s model can be seen as an attempt to construct some model, any 
model, that can meet the Learnability Condition. But Gold has shown that 
even if a model is unhindered by psychological considerations (i.e., the Devel- 
opmental, Cognitive, and Time Conditions), learnability cannot be established 
(that is, unless one flagrantly violates the Input Condition by requiring that 
the learner receive negative information). What’s more, no model can do 
better than Gold’s, whether or not it is designed to model the child. However, 
since children presumably do have a procedure whereby they learn the lan- 
guage of their community, there must be some feature of Gold’s learning 
paradigm itself that precludes learnability, such as the criterion for success 
or access to information. In Section IV, 1 will review research inspired by 
Gold’s theorems that tries to establish under what conditions language learn- 
ability from a sample of sentences is possible. 

IV. Grammatical Induction: Other Results 

Grammatical Induction from a Text 
This section will describe four ways in which languages can be learned from 
samples of sentences. One can either restrict the order of presentation of the 
sample sentences, relax the success criterion, define a statistical distribution 
over the sample sentences, or constrain the learner’s hypotheses. 

Order of sen tence presentation 
In Section III it was assumed that the sample strings could be presented to 

the learner in any order whatsoever. Gold (1967) proved that if it can be 
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known that the sample sentences are ordered in some way as a function of 
time, then all recursively enumerable languages are learnable from a positive 
sample. Specifically, it is assumed that the “teacher” selects the sentence to 
be presented at time t by consulting a primitive recursive function that ac- 
cepts a value oft as input and produces a sentence as output. Primitive recur- 
sive functions in this case refer to primitive recursive grammars that associate 
each sentence in the language with a unique natural number. Like primitive 
recursive grammars, they can be enumerated and tested, and the learner 
merely has to identify in the limit which function the teacher is using, in the 
same way that the learner discussed in Section III (and illustrated in Figure 1) 
identified primitive recursive grammars. This is sufficient to generate the sen- 
tences in the target language (although not necessarily sufficient to recognize 
them). Although it is hard to believe that every sentence the child hears is 
uniquely determined by the time that has elapsed since the onset of learning, 
we shall see in Section VI how a similar learning procedure allows the child 
to profit from semantic information. 

Another useful type of sequencing is called effective approximate ordering 
(Feldman, 1972). Suppose that there was a point in time by which every 
grammatical sentence of a given length or less had appeared in the sample. 
Suppose further that the learner can calculate, for any length of sentence, 
what that time is. Then, at that point, the learner can compute all the strings 
of that length or less that are not in the language, namely, the strings that 
have not yet appeared. This is equivalent to having access to non-sentences; 
thus learning can occur. Although it is generally true that children are ex- 
posed to longer and longer sentences as language learning proceeds (see Snow 
and Ferguson, 1977), it would be difficult to see how they could take advan- 
tage of this procedure, since there is never a point at which short sentences 
are excluded altogether. More generally, though, it is possible that the fairly 
systematic changes in the speech directed to the developing child (see Snow 
and Ferguson, 1977) contain information that is useful to the task of induc- 
ing a grammar, as Clark (1973) and Levelt (1973) have suggested. For exam- 
ple, if it were true that sentences early in the sample were always generated 
by fewer rules or needed fewer derivational steps than sentences later in the 
sample, perhaps a learner could reject any candidate grammar that used more 
rules or steps for the earlier sentences than for the later ones. However, the 
attempts to discern such an ordering in parental speech have been disap- 
pointing (see Newport et al., 1977) and it remains to be seen whether the 
speech directed to the child is sufficiently well-ordered with respect to this 
or any other syntactic dimension for an order-exploiting strategy to be effec- 
tive. I will discuss this issue in greater depth in Section IX. 
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Relaxing the success criterion 
Perhaps the learner should not be required to identify the target language 

exactly. We can, for example, simply demand that the learner approuch the 
target language, defining approachability as follows (Biermann and Feldman, 
1972; Feldman, 1972): 1) Every sentence in the sample is eventually included 
in the language guessed by the learner; 2) any incorrect grammar will at some 
point be permanently rejected; and 3) the correct grammar will be guessed 
an infinite number of times (this last condition defining strong approachab- 
ility). The difference between strong approachability and identifiability is 
that, in the former case, we do not require the learner to stick to the correct 
grammar once he has guessed it. Feldman has shown that the class of primi- 
tive recursive languages is approachable in the limit from a sample of sentences. 

The success criterion can also be weakened so as to allow the learner to 
identify a language that is an approximation of the target language. Wharton 
(1974) proposes a way to define a metric on the set of languages that use a 
given terminal vocabulary, which would allow one to measure the degree of 
similarity between any two languages. What happens, then, if the learner is 
required to identify any language whatsoever that is of a given degree of sim- 
ilarity to the target language? Wharton shows that a learner can approximate 
any primitive recursive language to any degree of accuracy using only a text. 
Furthermore, there is always a degree of accuracy that can be imposed on 
the learner that will have the effect of making him choose the target language 
exactly. However, there is no way of knowing how high that level of accuracy 
must be (if there were, Gold’s theorem would be false). Since it is unlikely 
that the child ever duplicates exactly the language of his community, Whar- 
ton and Feldman have shown that a Gold-type learner can meet the Learnabil- 
ity condition if it is suitably redefined. 

There is a third way that we can relax the success criterion. Instead of 
asking for the on/y grammar that fits the sample, we can ask for the simplest 
grammar from among the infinity of candidates. Feldman (1972) defines the 
complexity of a grammar, given a sample, as a joint function (say, the sum) 
of the intrinsic compZexity of the grammar (say, the number of rewrite rules) 
and the derivational complexity of the grammar with respect to the sample 
(say, the average number of steps needed to generate the sample sentences). 
He then describes a procedure which enumerates grammars in order of in- 
creasing intrinsic complexity, thereby finding the simplest grammar that is 
consistent with a positive sample. However it is important to point out that 
such a procedure will not identify or even strongly approach the target lan- 
guage when it considers larger and larger samples. It is easy to see why not. 
There is a grammar of finite complexity that will generate every possible 
string from a given vocabulary. If the target language is more complex than 
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this universalgrammar, it will never even be considered, because the universal 
grammar will always be consistent with the text and occurs earlier in the 
enumeration than the target grammar (Gold, 1967). Thus equipping the child 
with Occam’s Razor will not help him learn languages. 

Bayesian grammar induction 
If a grammar specifies the probabilities with which its rules are to be used, 

it is called a stochastic grammar, and it will generate a sample of sentences 
with a predictable statistical distribution. This constitutes an additional 
source of information that a learner can exploit in attempting to identify a 
language. 

Horning (1969) considers grammars whose rewrite rules are applied with 
fixed probabilities. It is possible to calculate the probability of a sentence 
given a grammar by multiplying together the probabilities of the rewrite rules 
used to generate the sentence. One can calculate the probability of a sample 
of sentences with respect to the grammar in the same way. In Horning’s para- 
digm, the learner also knows the a priori probability that any grammar will 
have been selected as the target grammar. The learner enumerates grammars 
in approximate order of decreasing a priori probability, and calculates the 
probability of the sample with respect to each grammar. He then can use the 
equivalent of Bayes’s Theorem to determine the a posteriori probability of 
a grammar given the sample. The learner always guesses the grammar with 
the highest a posterior-i probability. Horning shows how an algorithm of this 
sort can converge on the most probable correct grammar for any text. 

Constraining the hypothesis space 
In its use of a priori knowledge concerning the likelihood that certain 

types of languages will be faced, Horning’s procedure is like a stochastic ver- 
sion of Chomsky’s (1965) abstract description of a language acquisition device. 
Chomsky, citing the infinity of grammars consistent with any finite sample, 
proposes that there is a weighting function that represents the child’s selec- 
tion of hypothesis grammars in the face of a finite sample. The weighting 
function assigns a “scattered” distribution of probabilities to grammars, so 
that the candidate grammars that incorporate the basic properties of natural 
languages are assigned high values, while those (equally correct) grammars 
that are not of this form are assigned extremely low or zero values. In weight- 
ing grammars in this way, the child is making assumptions about the prob- 
ability that he will be faced with a particular type of language, namely, a 
natural language. If his weighting function is so constructed that only one 
highly-weighted grammar will be consistent with the sample once it has grown 
to a certain size, then learnability from a text is possible. To take an artificial 
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example, if the child gave high values only to a set of languages with com- 
pletely disjoint vocabularies (e.g., Hindi, Yiddish, Swahili, etc.), then even a 
single sentence would be sufficient evidence to learn a language. However, in 
Gold’s paradigm, a learner that assigned weights of zero to some languages 
would fail to learn those languages should they be chosen as targets. But in 
the case of the child, this need not be a concern. We need only show how the 
child is able to learn human languages; it would not be surprising if the child 
was thereby rendered unable to learn various gerrymandered or exotic lan- 
guages. 

There are two points to be made about escaping Gold’s conclusions by 
constraining the learner’s hypothesis set. First, we lose the ability to talk 
about a general rule-inducing strategy constrained only by the computation- 
theoretic “lines of fracture” separating classes of languages. Instead, we are 
committed to at least a weak form of nativism, according to which “the child 
approaches the data with the presumption that they are drawn from a lan- 
guage of an antecedently well-defined type”(Chomsky, 1965, p. 27). Second, 
we are begging the question of whether the required weighting function 
exists, and what form it should take. It is not sufficient simply to constrain 
the learner’s hypotheses, even severely. Consider Figure 2, a Venn diagram 
representing the set of languages assigned high a priori values (Circle A) and 
the set of languages that are consistent with the sample at a given point in 
the learning process (Circle B). To ensure learnability, the set of languages in 
the intersection between the two circles must shrink to a single member as 
more and more of the sample is considered. Circle B must not encompass 
Circle A completely, nor coincide with it, nor overlap with it to a large degree 
(a priori set too broad); nor can it be disjoint from it (a priori set too narrow). 
Specifying an a priori class of languages with these properties corresponds to 
the explanatory adequacy requirement in transformational linguistics. In 
Section VIII I shall examine an attempt to prove learnability in this way. 

We have seen several ways to achieve learnability, within the constraint 
that only grammatical sentences be available to the learner. However, in 

Figure 2. Achieving learnability by constraining the learner’s hypothesis set. 
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severing one head of this hydra, we see that two more have grown in its place. 
The learning procedures discussed in this section still require astronomical 
amounts of time. They also proceed in an implausible manner, violating both 
the Developmental and the Cognitive criteria. First, children do not adopt 
and jettison grammars in one piece; they seem to add, replace, and modify 
individual rules (see Brown, 1973). Second, it is unreasonable to suppose 
that children can remember every sentence they have heard, which they must 
do to test a grammar against “the sample”. In the next paragraphs I will 
review some proposals addressed to the Time Condition, and in Section V, 
research addressed more directly to the Developmental and Cognitive Condi- 
tions. 

Reducing Learning Time 
Efficient enumeration 
The learners we have considered generate grammars rather blindly, by using 

a grammar-grammar that creates rules out of all possible combinations of 
symbols. This process will yield many grammars that can be shown to be 
undesirable even before they are tested against the sample. For example, 
grammars could be completely equivalent to other grammars except for the 
names of their auxiliary symbols; they could have some rules that grind to a 
halt without producing a sentence, and others that spin freely without affect- 
ing the sentence that the other rules produce; they could be redundant or 
ambiguous, or lack altogether a certain word known to appear in the language. 
Perhaps our estimate of the enormous time required by an enumeration pro- 
cedure is artificially inflated by including various sorts of silly or bad gram- 
mars in the enumeration. Wharton (1977) has shown that if a learner had a 
“quality control inspector” that rejected these bad grammars before testing 
them against the sample, he could save a great deal of testing time. Further- 
more, if the learner could reject not one but an entire set of grammars every 
time a single grammar failed a quality control test or was incompatible with 
the sample, he could save even more time, a second trick sometimes called 
grammatical covering (Biermann and Feldman, 1972; Horning, 1969; Whar- 
ton, 1977; Van der Mude and Walker, 1978). Horning and Wharton have im- 
plemented various enumeration techniques as computer programs in order to 
estimate their efficiency, and have found that these “quality control” and 
“covering” strategies are faster than blind enumeration by many orders of 
magnitude. Of course, there is no simple way to compare computation time 
in a digital computer with the time the brain would take to accomplish an 
analogous computation, but somehow, the performance of the efficient enu- 
meration algorithms leaves little cause for optimism. For example, these tech- 
niques in one case allowed an IBM 360 computer to infer a finite state gram- 
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mar with two auxiliary symbols and two terminal symbols after several min- 
utes of computation. However natural languages have on the order of lo- 
100 auxiliary symbols, and in general the number of grammars using IZ auxil- 
iary symbols grown as 2”‘. Clearly, stronger medicine is needed. 

Ordering by a priori probability 
The use of an a priori probability metric over the space of hypothesis 

grammars, which allowed Horning’s procedure to learn a language without 
an informant, also reduces the average time needed for identification. Since 
Horning’s learner must enumerate grammars in approximate order of decreas- 
ing a priori probability, the grammars most likely to have been chosen as 
targets are also the ones first hypothesized. Thus countless unlikely grammars 
need never be considered. Similarly, if the learner could enumerate the 
“natural grammars” before the “unnatural” ones, he would learn more quick- 
ly than he would if the enumeration order was arbitrary. Unfortunately, still 
not quickly enough. Despite its approximate ordering by a priori probability, 
Horning’s procedure requires vast amounts of computation in learning even 
the simplest grammars; as he puts it, “although the enumeration procedure... 
is formally optimal, its Achilles’s heal is efficiency”. Similarly, the set of 
natural languages is presumably enormous, and more or less equiprobable as 
far as the neonate is concerned; thus even enumerating only the natural lan- 
guages would not be a shortcut to learning. In general, the problem of learn- 
ing by enumeration within a reasonable time bound is likely to be intractable. 
In the following section 1 describe the alternative to enumeration procedures. 

V. Heuristic Grammar Construction 

Algorithms and Heuristics for Language Learning 
Like many other computational problems, language learning can be attempted 
by algorithmic or heuristic techniques (see Newell and Simon, 1973). The 
enumerative procedures we have been discussing are algorithmic in that they 
guarantee a solution in those cases where one exists.’ Unfortunately they are 
also prohibitively time-consuming and wildly implausible as models of chil- 
dren. Heuristic language learning procedures, on the other hand, may hold 
greater promise in these regards. They differ from the enumerative procedures 
in two respects. First, the grammars are not acquired and discarded whole, 
but are built up rule by rule as learning proceeds. Second, the input sentences 

‘Strictly speaking, they are not “algorithms” in the usual sense of effective procedures, since they 
do not compute a solution and then halt, but compute an infinite series of guesses. 
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do not just contribute to the binary decision of whether or not a grammar is 
consistent with the sample, but some property possessed by sample sentences 
is used as a hint, guiding the process of rule construction. Thus heuristic lan- 
guage learning procedures are prima facie candidates for theories of human 
language acquisition. They acquire language piecemeal, as children do (Brown, 
1973), and they have the potential for doing so in a reasonable amount of 
time, drawing their power from the exploitation of detailed properties of the 
sample sentences instead of the exhaustive enumeration of a class of gram- 
mars. 

Many heuristic procedures for acquiring rules of finite state and context- 
free grammars have been proposed (for examples see Biermann and Feldman, 
1972; Fu and Booth, 1975; and Knobe and Knobe, 1977). The following 
example should give the reader the flavor of these procedures. Solomonoff 
(1964) suggested a heuristic for inferring recursive context-free rules from a 
sample, in this case with the aid of an informant to provide negative informa- 
tion. Recursive rules (not to be confused with the “recursive grammars” dis- 
cussed earlier) rewrite a symbol as a string containing the original symbol, 
i.e., rules of the form A + BAC. They are important because they can be 
successively applied an infinite number of times, giving the grammar the 
power to generate an infinite number of sentences. An English example might 
rewrite the symbol for an adjective “A” as the sequence “very A”. Solo- 
monoff’s learner would delete flanking substrings from an acceptable sample 
string, and ascertain whether the remaining string was grammatical. If so, he 
would sandwich that string repetitively with the substrings that were initially 
deleted, testing each multi-layered string for grammaticality. If they were all 
grammatical, a recursive rule would be constructed. For example, given the 
string XYZ in the original sample, the learner would test Y, then if success- 
ful, XXYZZ, XXXYZZZ, and so on. If a number of these were acceptable, 
the rules A -+ XAZ and A -+ Y would be coined. 

Caveats concerning heuristic methods 
Several points must be made about heuristic methods, lest it appear that 

in trading enumerative procedures for heuristic ones one gets something for 
nothing. First, as I have mentioned, no procedure can do better than Gold’s, 
either in overall success or in speed, when the set of target languages consists 
of one of the classes in the Chomsky hierarchy. If the heuristic procedures 
succeed in learning some languages in a reasonable amount of time, they must 
take large amounts of time or fail altogether for many other ones. Thus we 
must again abandon the notion of a general rule learner who is constrained 
only by the sorts of processing or memory limits that implicitly define 
classes of computational procedures. Second, heuristic procedures commit 
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the learner to assumptions not only about the target languages, but about 
the sentences that find their way into the sample. That is, the procedures 
could be fooled by using unusual or unrepresentative sets of sentences as the 
basis for rule construction. Consider Solomonoffs heuristic. If the target 
language permitted no more than three levels of embedding, the learner would 
have erred by constructing a rule that permitted an infinite number of em- 
beddings. On the other hand, if the sample was a text lacking the multiply- 
embedded sentences that in Solomonoff’s case were provided by the infor- 
mant, the learner would have erred by constructing the overly-narrow rule 
which simply generates the original string XYZ. In the natural language case, 
of course, these problems are less worrisome. Not only will the child do well 
by “assuming” that the target language is a member of a relatively constrained 
set (viz., the natural languages), but he will do well in “assuming” that his 
sample will be a well-defined subset of the target language, not some capri- 
cious collection of sentences. Whatever its exact function may turn out to 
be, the dialect of speech addressed to children learning language has been 
found to have indisputably consistent properties across different cultures 
and learning enviromnents (see Snow and Ferguson, 1977). 

However, one difference between algorithmic and heuristic procedures 
advises caution. Whereas enumeration procedures guarantee success in learn- 
ing an entire language, each heuristic at best gives hope for success in acquir- 
ing some piece of the grammar. But one can never be sure that a large collec- 
tion of heuristics will be sufficient to acquire all or even a significant portion 
of the language. Nor can one know whether a heuristic that works well for 
simple constructions or small samples (e.g., the research on the construction 
of context-free and finite state rules cited earlier) will continue to be success- 
ful when applied to more complex, and hence more realistic tasks. In other 
words, in striving to meet the Developmental, Cognitive, or Time Conditions, 
we may be sacrificing our original goal, Learnability. The research to be dis- 
cussed in the remainder of this section illustrates this tradeoff. 

The computer simulation of heuristic language acquisition 
Since one cannot prove whether or not a set of heuristics will succeed in 

learning a language, several investigators have implemented heuristic strate- 
gies as computer programs in order to observe how effective the heuristics 
turn out to be when they are set to the task of acquiring rules from some 
sample. Constructing a learning model in the form of a computer program 
also gives the designer the freedom to tailor various aspects of the program 
to certain characteristics of human language learners, known or hypothesized. 
Thus the theorist can try to meet several of our conditions, and is in a better 
position to submit the model as a theory of human language acquisition. 
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Kelley ‘s Program 
Kalon Kelley (1967) wrote the first computer simulation of language acquisi- 
tion. His priority was to meet the Developmental criterion, so his program 
was designed to mimic the very early stages of the child’s linguistic develop- 
ment. 

Kelley’s program uses a heuristic that we may call word-class position 
learning. It assumes that the words of a language fall into classes, and that 
each class can be associated with an absolute or relative ordinal position in 
the sentence. At the time that Kelley wrote the program, an influential theory 
(“pivot grammar”, Braine, 1963) asserted that early child language could be 
characterized in this way. As an example of how the heuristic works, consider 
the following sentences: 

1. (a) He smokes grass. 
(b) He mows grass. 
(c) She smokes grass. 
(d) She smokes tobacco. 

A learner using the word-class position heuristic would infer that “he” and 
“she” belong to one word class, because they both occur as the first word of 
the sentence (or perhaps because they both precede the word “smokes”); 
similarly, “smokes” and “mows” can be placed in another word class, and 
“grass” and “tobacco” can be placed into a third. The learner can also infer 
that a sentence can be composed of a word from the first class, followed by 
a word from the second class, followed by a word from the third class. A 
learner who uses this heuristic can now produce or recognize eight sentences 
after having heard only four. 

Kelley’s program is equipped with three sets of hypotheses, corresponding 
to the periods in which the child uses one-, two-, and three-word utterances, 
respectively. The program advances from one stage to the next at arbitrary 
moments designated by the programmer. Its first strategy is to count the 
number of occurrences of various “content” words in the sample sentences; 
these words are explicitly tagged as content words by the “adult”. It retains 
the most frequent ones, and can produce them as one-word sentences. In its 
second stage, it looks for two word classes, called “things” and “actions”. 
Kelley assumes that children can tell whether a word refers to a thing or an 
action by the non-linguistic context in which it was uttered. To model this 
assumption, his program guesses arbitrarily that a particular word is in one or 
the other class, and has access to its “correct” classification. If the guess is 
correct, it is strengthened as a hypothesis; if incorrect, it is weakened. At the 
same time, the program tabulates the frequency with which the word classes 
precede or follow each other, thereby hypothesizing rules that generate the 
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frequent sequences of word classes (e.g., S + thing action; S + thing thing). 
Like the hypotheses that assign words to classes, these rules increase or de- 
crease in strength according to how frequently they are consistent with the 
input sentences. In its third state, the program retains its two word classes, 
and adds a class consisting of two-item sequences (e.g., thing-action) from 
the previous stage. As before, it accumulates evidence regarding which of 
these classes can occur in which sentence positions relative to one another, 
thereby hypothesizing rules that generate frequent sequences of classes (e.g., 
S + thing-action thing). A separate feature of the program is its ability to 
learn the “functions’2 of the individual sentence constituents, such as which 
is the subject and which is the predicate. As before, the program learns these 
by making rather arbitrary guesses and checking them against the “correct” 
answer, to which it has access. 

An evaluation 
Though Kelley’s program was a brave first attempt, it is unsatisfactory on 

many counts. For one thing, children seem unaffected by the frequency of 
syntactic forms in adult speech (Brown, 1973), whereas frequency of input 
forms is the very life-blood of Kelley’s learning procedure. Second, the role 
of the “correct” structural descriptions of sentences given to the program is 
puzzling. Kelley intends them to be analogous to the child’s perception that 
a word uttered in the context of some action is an “action” word, that a part 
of a sentence denoting an object being attended to is the “subject” of the 
sentence, and so on. But in the context of the program, this is reduced to 
the trivial process of guessing the class or function of a word, and being told 
whether or not the guess is correct. I will review more systematic attempts to 
simulate perceptual and pragmatic clues in Sections VI-VIII. Finally, the 
heuristics that the program uses are inadequate to advance beyond the three- 
word stage since, as we shall see, natural languages cannot be characterized 
by sequences of word classes. In any case, one must question whether there 
is really any point in doing simulations that address themselves only to the 
Developmental Condition. The early stages of language development can 
easily be accounted for by all sorts of ad hoc models; it is the acquisition of 
the full adult grammar that is the mystery. 

The Distributional Analysis Heuristic 
The problem with the word-class position heuristic when it is applied to 
learning natural languages is that it analyzes sentences at too microscopic a 
level. It is practically impossible to state natural language regularities in terms 
of contiguous word classes in sentences. Consider the following sentences: 
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2. (a) That dog bothers me. 
(b) What she wears bothers me. 
(c) Cheese that is smelly bothers me. 
(d) Singing loudly bothers me. 
(e) The religion she belongs to bothers me. 

In the different sentences, the word “bothers” is preceded by a noun, a 
verb, an adjective, an adverb, and a preposition. Clearly there is a generaliza- 
tion here that an astute learner should make: in all the sentences, “bothers” 
is preceded by a noun phrase. But noting that certain word classes precede 
“bothers” will not capture that generalization, and will only lead to errors 
(e.g., “Loudly bothers me”). 

A more general heuristic should look for more flexible contexts than 
either ordinal position in a sentence or position relative to an adjacent item, 
and should define classes more broadly, so that each class can consist of 
strings of words or subclasses instead of single words. Kelley’s program moved 
in this direction in its third stage. Heuristics of this sort are often called dis- 
tributional analysis procedures (see Harris, 1964), and exploit the fact that 
in context-free languages, the different instantiations of a grammatical class 
are interchangeable in the same linguistic context. Thus it is often a good bet 
that the different strings of words that all precede (or follow, or are em- 
bedded in) the same string of words all fall into the same class, and that if 
one member of such a class is found in another context, the other members 
of that class can be inserted there, too. Thus in sentences 2(a-e), a distribu- 
tional analysis learner would recognize that all strings that preceed “bothers 
me” fall into a class, and that a member of that class followed by the phrase 
“bothers me” constitutes a sentence. If the learner then encounters the sen- 
tence “That dog scares me”, he can place “scares me” and “bothers me” into 
a class, and “scares” and “bothers” into a subclass. If he were to encounter 
“Sol hates that dog”, he could place all the noun phrases in the first class 
after the phrase “Sol hates”. By this process, the learner could build up cate- 
gories at different levels of abstraction, and catalogue the different ways of 
combining them in sentences. 

Problems with distributional analysis 
There are several hurdles in the way of using distributional analysis to learn 

a natural language. First, it requires a great many sets of minimally-contrast- 
ing sentences as input. We know that American children often do hear closely- 
spaced sets of sentences with common constituents (e.g., Brown, Cazden, 
and Bellugi, 1969; Snow, 1972; see Snow and Ferguson, 1977), but we do 
not know whether this pattern is universal, nor whether it occurs with enough 
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grammatical constituents to determine uniquely every rule that the child can 
master. Second, a distributional analysis of a sample of a natural language is 
fraught with the possibility for serious error, because many words belong to 
more than one word class, and because virtually any subsequence of words in 
a sentence could have been generated by many different rules. For example, 
sentences 3(ad) 

3. (a) Hottentots must survive. 
(b) Hottentots must fish. 
(c) Hottentots eat-fish. 
(d) Hottentots eat rabbits. 

would seduce a distributional analysis learner into combining heterogeneous 
words such as “must” and “eat” into a single class, leading to the production 
of “Hottentots must rabbits”, “Hottentots eat survive”, and other monstro- 
sities. 

Finally, there is a combinatorial explosion of possibilities for defining the 
context for a given item. Given n words in a sentence other than the item of 
interest, there are 2” ~ 1 different ways of defining the “context” for that item 
- it could be the word on the immediate right, the two words on the immediate 
left, the two flanking words, and so on. In combination with the multiple 
possibilities for focusing on an item to be generalized, and with the multiple 
ways of comparing items and contexts across large sets of sentences, these 
tasks could swamp the learner. However by restricting the types of contexts 
that a learner may consider, one can trade off the first and third problems 
against the second. An extremely conservative learner would combine two 
words in different sentences into the same class only if all the remaining 
words in the two sentences were identical. This would eliminate the explo- 
sion of hypotheses, and sharply reduce the chances of making overgeneral- 
ization errors, but would require a highly overlapping sample of sentences to 
prevent undergeneralization errors (for example, considering every sentence 
to have been generated by a separate rule). Siklossy (197 1, 1972) developed a 
model that relies on this strategy. On the other hand, a bolder learner could 
exploit more tenuous similarities between sentences, making fewer demands 
on the sample but risking more blunders, and possibly having to test for more 
similarities. It is difficult to see whether there is an “ideal” point along this 
continuum. In any case no one has reported a successful formalization or 
computer implementation of a “pure”distributiona1 analysis learner. Instead, 
researchers have been forced to bolster a distributional analysis learner with 
various back-up techniques. 
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An ‘Au toma ted Linguist ” 
Klein and Kuppin ( 1970) have devised what they call “an automatic linguistic 
fieldworker intended to duplicate the functions of a human fieldworker in 
learning a grammar through interaction with a live human informant”. Though 
never intended as a model of a child, “Autoling”, as they call it, was the most 
ambitious implementation of a heuristic language learner, and served as a 
prototype for later efforts at modelling the child’s language learning (e.g., 
Anderson, 1974; Klein, 1976). 

Use of distributional analysis 
The program is at heart a distributional analysis learner. As it reads in a 

sentence, it tries to parse it using the grammar it has developed up until that 
point. At first each rule simply generates a single sentence, but as new sen- 
tences begin to overlap with old ones, the distributional heuristics begin to 
combine words and word strings into classes, and define rules that generate 
sequences of classes and words. Out of the many ways of detecting similar 
contexts across sentences, Autoling relies most heavily on two: identical 
strings of words to the left of different items, and alternating matching and 
mismatching items. 

Generalizing rules 
Autoling also has heuristics for generalizing rules once they have been 

coined. For example, if one rule generates a string containing a substring that 
is already generated by a second rule (e.g., X + ABCD and Y -+ BC), the first 
rule is restated so as to mention the left-hand symbol of the second rule in- 
stead of the substring (i.e., X -+ AYD; note that this is a version of Solomo- 
noff’s heuristic). Or, if a rule generates a string composed of identical sub- 
strings (e.g., X + ABCABC), it will be converted to a recursive pair of rules 
(i.e., X --f ABC; X -j XABC). Each such generalization increases the range of 
sentences accepted by the grammar. 

Taming generalizations 
In constructing rules in these ways, Autoling is generalizing beyond the 

data willy-nilly, and if left unchecked, would soon accept or generate vast 
numbers of bad strings. Autoling has three mechanisms to circumvent this 
tendency. First, whenever it coins a rule, it uses it to generate a test string, 
and asks the informant whether or not that string is grammatical. If not, the 
rule is discarded and Autoling tries again, deploying its heuristics in a slightly 
different way. If this fails repeatedly, Autoling tries its second option: creating 
a transformational rule. It asks its informant now for a correct version of the 
malformed string, and then aligns the two strings, trying to analyze the cor- 
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rect string into constituents similar to those of the malformed string. It then 
generates a rule that transforms the malformed into the correct string, per- 
muting or deleting the most inclusive common constituents. As before, it 
uses the new transformation to generate a test string, and asks the informant 
for a verdict on its grammaticality, discarding the rule and trying again if the 
verdict is negative. Finally, if nothing succeeds, the entire grammar self- 
destructs, and the heuristics begin again from scratch on the entire collection 
of acceptable sentences, which have been retained since the beginning of the 
learning session. 

An evahation 
Autoling was not meant to be a model of the child, and needless to say, it 

is far from one. Unlike children, it scans back and forth over sentences, makes 
extensive use of negative feedback and corrections from an informant (cf., 
Brown et al., 19691, tests each new rule methodically, remembers every sen- 
tence it hears, and gives up and restarts from scratch when in serious trouble. 
But it is important as a vivid illustration of the pitfalls of building a language 
learning model around a collection of heuristics. It is bad enough that Auto- 
ling resembles one of Rube Goldberg’s creations, with its battery of heuristics 
(only a few of which I have mentioned), its periodic checkings and recheck- 
ings for overlapping, redundant, or idle rules, its various cleanup routines, its 
counters tabulating its various unsuccessful attempts, and so on. But even 
with all these mechanisms, Autoling’s success as a language learner is very 
much in doubt. Klein and Kuppin do present records of the program success- 
fully inducing grammars for artificial languages such as a set of well-formed 
arithmetic expressions. But as an illustration of its ability to learn a natural 
language, they present a rather unparsimonious grammar, constructed on its 
second attempt, which generates a finite fragment of English together with a 
variety of gibberish such as “need she” and “the want take he”, Klein and 
Kuppin are simply unable to specify in any way what Autoling can or cannot 
learn. Thus Autoling - and, I would argue, any other attempt to model gram- 
mar acquisition via a large set of ad hoc heuristics - does not seem a promis- 
ing start for an adequate theory of language learning. Not only does it violate 
the Developmental, Cognitive, and Input Conditions, but it does not even 
come close to meeting the Learnability Condition - the chief motivation for 
designing learning simulations in the first place. 

VI. Semantics and Language Learning 

I have postponed discussing the role of semantics in language learning for as 
long as possible, so as to push the purely syntactic models as far as they can 
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go. But the implausibility of both the enumerative and the heuristic learners 
seems to indicate that the time has come. 

The “Cognitive Theory” of Language Learning 
The semantic approach to language learning is based on two premises. First, 
when children learn a language, they do not just learn a set of admissible sen- 
tences; they also learn how to express meanings in sentences. Second, child- 
ren do not hear sentences in isolation; they hear them in contexts in which 
they can often make out the intended meanings of sentences by non-linguistic 
means. That is, they can see what objects and actions are being referred to in 
the sentences they hear, and they can discern what their parents are trying to 
communicate as they speak. (Kelley incorporated a version of this assump- 
tion into his model.) An extremely influential theory in developmental psy- 
cholinguistics (often called the “Cognitive Theory”) asserts that children 
learn syntax by inferring the meanings of sentences from their non-linguistic 
contexts, then finding rules to convert the meanings into sentences and vice- 
versa (Macnamara, 1972; Schlesinger, 197 1). Several considerations favor the 
Cognitive Theory. The first (though rarely cited) consideration is that seman- 
tic information can substitute for information about non-sentences to make 
classes of languages formally learnable. The second is that there is some em- 
pirical evidence that both children and adults use semantic information when 
they learn syntactic rules. The third consideration is that this task is thought 
to be “easier” than inferring a grammar from a set of strings alone, because 
the mental representations corresponding to sentence meanings are thought 
to resemble the syntactic structures of sentences. I will discuss each justifica- 
tion for the semantic approach in turn. 

Learnability with Semantic Information 
John Anderson ( 1974,1975,1976) has described a semantic version of Gold’s 
language acquisition scenario, formalizing an earlier speculation by Clark 
(1973). First, he assumes that whatever “sentence meanings” are, they can 
be expressed in a formal symbolic notation, and thus can be put into one-to- 
one correspondence with the set of natural numbers by the mathematical 
technique known as “Giidelization”. Second, he assumes that a natural lan- 
guage is a function that maps sentences onto their meanings, or equivalently, 
well-formed strings onto natural numbers, and vice-versa. (In contrast, we 
have been assuming that natural languages are functions that map strings onto 
the judgments “grammatical” and “non-grammatical”, or equivalently, “1” 
and “O”.) Third, he assumes that children have access to a series of pairs con- 
sisting of a sentence and its meaning, inferred from the non-linguistic context. 
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The child’s task is to identify in the limit a function which maps sentences 
onto their meanings. 

Recall that Gold (1967) proved that the class of primitive recursive func- 
tions, which map strings onto numbers, is learnable provided that the learner 
has eventual access to all number-string pairs. For Gold, the numbers repre- 
sented the trial number or time since the start of learning, but in Anderson’s 
model, the numbers correspond to sentence meanings. The learner enumer- 
ates the primitive recursive functions, testing each one against the sample of 
sentence-meaning pairs, retaining a functionif it is consistent with the sample 
(see Figure 1). In this way the learner will identify the function (and hence 
the language) in the limit, since all incorrect functions will be rejected when 
they pair a meaning with a different string than the one in the sample. 

Although in this version the learner can be proved to succeed without re- 
quiring information as to what is not a sentence, all of Gold’s other conclu- 
sions remain in force. It will take the learner an astronomical amount of time 
until he arrives at the correct function, but there is no quicker or more suc- 
cessful method, on the whole, than enumerating functions one by one. By 
suitably restricting the learner’s hypothesis space, learning time can be re- 
duced, and by using heuristic procedures that exploit properties of individual 
meaning-sentence pairs, it can be reduced even further. But once again the 
learner ceases to be a multipurpose rule learner - he makes tacit assumptions 
about the syntax of the target language, about the way that meanings are 
mapped onto strings, and about the representativeness of the meaning-sen- 
tence pairs in the sample at a given time. He will fail to learn any language 
that violates these assumptions. As Chomsky (1965) has noted, the hypo- 
thesis that the child uses semantics in learning syntax is in some senses 
stronger, not weaker, than the hypothesis that sentences alone are used. 

Evidence for the Cognitive Theory 
Cognitive development and language acquisition 
Two sorts of evidence have been martialled in support of the view that 

humans base their learning of syntax upon their conceptualization or percep- 
tion of the meanings of sentences. The first consists of various correlations 
between language development and cognitive development, which are thought 
to imply that the non-linguistic mental representations available to the child 
constrain the linguistic hypotheses that he will entertain. For example, the 
early two- and three-word utterances of children seem to reflect closely cer- 
tam semantic relations such as agent-action, possessor-possessed, etc. (Bower- 
man, 1973; Brown, 1973; Schlesinger, 1971). As well, the “cognitive com- 
plexity” of the semantic functions underlying various grammatical rules has 
been shown to predict in a rough way the order of the child’s mastery of 
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those rules (Brown, 1973). Similarly, it has been found that some syntactic- 
ally simple rules (such as the conditional in Russian) are not acquired until 
the underlying semantic functions (in this case, implication) have been mas- 
tered (Slobin, 1973). 

Semantics and artificial language learning 
The second sort of evidence comes from a set of experiments in which 

adult subjects are required to learn artificial languages, that is, they must 
learn to discriminate grammatical from ungrammatical test strings as defined 
by a grammar concocted by the experimenter. In early experiments of this 
type (e.g., Miller, 1967), where subjects saw various strings of nonsense syl- 
lables, even the simplest grammars were extremely difficult for the subjects 
to learn. However, in a famous set of experiments, Moeser and Bregman 
(1972, 1973) presented some subjects with a sample of strings, and other 
subjects with a sample in which each string was paired with a picture of geo- 
metric forms such that the shapes, colors, and spatial relations of the forms 
corresponded to the words and syntactic relations in the sentences (that is, 
the pictures were intended to serve as the semantic referents of the strings). 
After more than 3000 strings had been presented, the subjects who saw 
only strings failed utterly to discriminate grammatical from ungrammatical 
test strings, while those who saw strings and pictures had no trouble making 
the discrimination. This finding has led many theorists to conclude that it is 
intrinsically easier for humans to learn syntactic rules if they use semantic 
information in addition to sentences. 

However Anderson (1974, 1975) has pointed out that semantics-based 
learners, including the subjects in Moeser and Bregman’s studies, learn by 
virtue of specific assumptions they make about the way the target language 
uses syntactic structures to express semantic relations. For example, he notes 
that natural languages require an adjective to predicate something about the 
referent of the noun in its own noun phrase, never a noun in another noun 
phrase in the sentence. That is, in no natural language could a phrase such as 
“the blue stripes and the red rectangle” refer to an American flag, even 
though the sentences of such a language might be identical to the sentences 
of (say) English, and the semantic relations expressible in that language might 
be identical to those expressible in (say) English. Anderson performed an 
experiment in whichsubjects saw strings of English words (referring to shapes, 
colors, and spatial relations) generated by an artificial grammar. A second 
group saw the same strings paired with pictures in such a way that each adjec- 
tive in the sentence modified the noun in its phrase; a third group saw the 
same strings and pictures, but they were paired in such a way that each adjec- 
tive modified a noun in a different phrase (like our example with the flag). 
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Only the second group of subjects, with the “natural semantics”, were later 
able to discriminate grammatical from ungrammatical test strings. Thus, 
Anderson argues, it is not the availability of semantic information per se that 
facilitates syntax learning in humans, but semantic information that corres- 
ponds to the syntactic structures in the target language in some assumed 
wa~.~ These correspondences will be explained in the next section, in which 
semantics-based learning heuristics are discussed. 

Heuristics tht use Semantics 
The most important fact about the natural language acquisition task is that 
the units composing linguistic rules are abstract, and cannot be derived from 
sample strings in any simple way. The problem with distributional analysis 
was that these units or “constituents” do not uniquely reveal themselves in 
the patterns of sentence overlappings in a sample. However, if the semantic 
representation of a sentence corresponds in a fairly direct way to the syn- 
tactic description of that sentence, semantic information can serve the same 
purpose as distributional regularities. The syntactic structure of a sentence in 
a context-free or context-sensitive language can be depicted as a tree, with 
each node representing a constituent, and the set of branches emanating from 
a node representing the application of a rule rewriting that constituent as a 
sequence of lower-order constituents. Similarly, the mental representational 
structures corresponding to percepts and sentence meanings are also often 
represented as trees or similar graph structures (e.g., Anderson and Bower, 
1973; Norman and Rumelhart, 1975; Winston, 1975). The top nodes of such 
trees usually correspond to logical propositions, and the branches of these 
trees correspond to the breakdown of propositions into their subjects and 
predicates, and to the successive breakdown of the subject and predicate into 
concepts and relations, or into further propositions. If the tree representing 
a sentence meaning is partially isomorphic to the constituent structure of the 
sentence, presumably there is a way that a child can use the meaning struc- 
ture, which by assumption he has, to discern the constituent structure of the 
sentence, which he does not have. Anderson (1974, 1975, 1977) has demon- 
strated precisely how such heuristics could work. In the following paragraphs 
1 shall explain the operation of these heuristics; then. in Section VII, I shall 
show how Anderson has embodied these heuristics in a computer model of 
the language learner. 

20f course, in this particular case the assumption about semantics and syntax riced not have been 
innate, since the subjects’ tacit knowledge of English could have constrained their hypotheses. 
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Using semantics to delineate constituents: the Tree-fitting heuristic 
This heuristic begins with the assumption that the child knows the mean- 

ing of all the “content” words in the sentence, that is, he knows to which 
concept node in the meaning structure each word corresponds. The learner 
matches the concepts in the meaning structure to the words in the sentence, 
and attempts to fit the tree structure for the meaning onto the sentence, 
spatially rearranging the nodes and branches as necessary but preserving all 
links between nodes. The learner now has a tree-structure for the sentence, 
and can deduce what the constituents are and how the rules of the grammar 
rewrite the major constituents as sequences of minor ones. 

An example will make this heuristic clearer. Say the child saw a white cat 
eating a mouse. His perceptual system might construct the propositions “X is 
a CAT”, “X is WHITE”, “Y is a MOUSE”, and “X EATS Y”, which can be 
depicted as a single tree-structure like the one in Figure 3(a). Say the child 
simultaneously heard the string of words “the white cat eats a mouse”. By 
matching the word “white” onto the concept “WHITE” (and so on for the 
other words), reversing the order of the respective links to “CAT” and to 
“MOUSE”, and straightening out continuous series of links, the child can 
arrive at the tree-structure for the sentence which is depicted in Figure 3(c). 
He can then hypothesize rules specifying that a sentence can be broken down 
into two constituents, that one constituent can be broken down into a class 
containing the word “white” and another containing the word “cat”, and 
that the second main constituent can be broken down into the word “eats” 
and a constituent containing a class containing the word “mouse”. Further- 
more, the child can construct rules translating syntactic constituents into 
semantic propositions and vice-versa. In this example, he could hypothesize 
that the first major constituent of a sentence refers to some individual that 
is the subject of an underlying proposition, the first word class in this consti- 
tuent refers to some property predicated of that individual, and so on. 

The problem with this heuristic is that there are usually many ways to fit 
a semantic structure onto a string of words, only one of which will corres- 
pond to the correct breakdown of the sentence into its syntactic constituents. 
For example, nothing would have prevented the child in our example from 
constructing the syntactic trees depicted in Figures 3(d) and (e) instead of 
the one in Figure 3(c). Anderson has proposed two mechanisms by which 
the heuristic could “know” the best way to fit the semantic tree onto the 
string. First, the learner must know which node of the semantic tree should 
be highest in the syntactic tree, in order to distinguish between the possibil- 
ities represented in Figures 3(c) and (d). This corresponds to knowing the 
main proposition of the sentence, that is, what is the major topic of the sen- 
tence and what is the major thing being asserted of it. Anderson suggests that 
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Figure 3. Semantic structure (a) to be fitted onto the string(b) in various ways by the 
Tree-fitting heuristic. In this formalism for semantic structures (HAM; Ander- 
son and Bower, 1973), S = subject, P = predicate, R = relation, 0 = object, 
X and Y represent individuals, and capitalized terms are concepts, which car- 
respond to words. 

this pragmatic information is communicated to the child during his normal 
interactions with adults; in other words, the social and communicative con- 
text in which a sentence is uttered makes it clear what the adult intends to 
assert about what (see Bruner, 1975, for supporting arguments and evidence). 
For the tree-fitting heuristic, this means that one of the propositions in the 
semantic structure is tagged as the “principal” one, and its node will be 
highest when the semantic tree is fitted onto the string of words. The nodes 
connected to this “root” node by one link are placed one level lower, fol- 
lowed by the nodes connected to the root by two links, and so on. Thus if 
the main propositiori concerns what the cat did to the mouse, the heuristic 
will fit the tree depicted in Figure 3(c) onto the string. On the other hand, if 
it is the whiteness of the mouse-eating cat that is being asserted (e.g., “white 
is the cat that eats the mouse”), the heuristic will fit the tree depicted in 
Figure 3(d) onto the string. 
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The second constraint on the heuristic is that no branches be allowed to 
cross. Thus the heuristic would be prohibited from fitting the tree depicted 
in Figure 3(e) onto the string. No set of context-free rules can generate a tree 
like this, and in fact what the constraint does is prevent the heuristic from 
constructing trees from which no context-free rules can possibly be derived. 
Thus this constraint, which Anderson calls the Gruph Deformation Condi- 
tion, will prevent the learner from learning languages that use certain rules to 
transform meaning structures into sentences. For example, it cannot learn a 
language that could express the semantic structure in Figure 3(a) by the 
string of words “the cat eats white a mouse”. Nor could it learn the “unna- 
tural semantics” language that the subjects in Anderson’s experiment failed 
to learn. In each case it would be unable to fit the semantic structure onto 
the string without crossing branches, as Figure 3(f) shows. In general, the 
heuristic is incapable of learning languages that permit elements from one 
constituent to interrupt the sequence of elements in another constituent. As 
Anderson argues, this is a particularly telling example of how a semantics- 
based heuristic in effect assumes that the language it faces maps meanings 
onto sentences only in certain ways. In this case, the Tree-fitting heuristic 
“assumes” that the language meets the Graph Deformation Condition. 
Anderson believes that natural languages obey this constraint for the most 
part, and that both children and adults (such as his experimental subjects) 
tacitly assume so as they use the Tree-fitting heuristic. I will discuss these 
claims in Section VII. 

Using semantics to generalize rules 
Once the learner has broken down sentences into their constituents and 

hypothesized the corresponding rewrite rules, he must combine rules that 
have been derived from different sentences - otherwise he is left with one 
set of rules for each sentence, not much better than a learner who simply 
memorized the sentences whole. Rule-merging is a particularly rocky step for 
distributional analysis heuristics (as sentences 3(a-d) showed), since sentences 
from natural languages provide countless temptations to merge dissimilar 
constituents owing to the syntactic ambiguity of most short substrings. Klein 
and Kuppin’s program tentatively merged rules with overlapping constituents, 
used the newly-merged rules to generate a sentence, and submitted the sen- 
tence to the informant for approval before it would declare the merger per- 
manent. But this is an unrealistic way to keep overgeneralizations in check. 
Not only do children not have access to such an informant, but even if they 
did, it is unlikely that the Autoling strategy would work as required. A 
merged rule can usually generat e many sentences, sometimes an infinite 
number, so the knowledge that one string is acceptable does not mean that 
all the strings generated by the rule will be acceptable. 
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However information in the semantic representation might be used instead 
to decide whether rules can safely be merged. First, Anderson suggests that 
words in the same positions in different sentences whose concepts have iden- 
tical roles in the semantic structure can be merged into one class. For exam- 
pie, say the learner, after processing the meanings-sentence pair in Figure 3(c), 
encountered the sentence “The green snail nibbles the leaf”, together with 
its semantic structure, as shown in Figure 4(a) and (b). After fitting the 
semantic tree onto the string (see Figure 4(c)) and deriving the corresponding 
rules, the learner can use the similarities between the semantic representations 
in Figures 3(a) and 4(a) to merge the two sets of rules. For example, “EATS” 
in Figure 3(a) corresponds to the “relation” branch of the predicate of the 
main proposition, and so does “NIBBLES” in Figure 4(a). The learner can 
then merge the corresponding words into one class, and by similar means can 
merge “white” and “green”, “eat” and “snail”, and so on. 

Now the learner must recognize that the higher constituents in the two 
sentences can also be merged, such as the ones embracing “the white cat” 
and “the green snail”. Anderson suggests a double criterion for when to merge 
higher-order constituents: they must decompose into identical sub-constitu- 
ents, and they must serve the same semantic role. In this example, both are 
satisfied: the word classes in the two constituents have already been merged, 
and both constituents serve as the subject of their respective main proposi- 
tions. Once all the parallel constituents in the two sentences have been 
merged, the learner will end up with a grammar that generates sixteen differ- 
ent sentences: “the green cat eats a leaf”, “the white snail nibbles a mouse”, 

Figure 4. Sernarztic structure (A), string (B), and tree (C) which, in corljunction with 
Figure 3, illustrate the Set,lantics-lrlduccl Equi~~alcnce Heuristic. 
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and so on. Anderson calls this heuristic (and the putative property of natural 
languages that it exploits) Semantics-Induced Equivalence of Syntax. He 
asserts that the heuristic exploits the tendency of natural languages always to 
use the same syntactic construction to express a particular semantic relation 
within a given higher-order constituent. Whether or not this claim is true of 
English will be discussed in Section VII. 

It is interesting to note that the Semantics-Induced Equivalence of Syntax 
heuristic is neither more nor less conservative, on the whole, than Distribu- 
tional Analysis. Each will try to merge in situations where the other would 
not. Thus the Distributional Analysis heuristic would make no generalization 
embracing the sentences in Figures 3 and 4, since they share no content 
words. Instead it would have to wait until some sentence like “the green snail 
eats a mouse” appeared. On the other hand, the Semantics-Induced Equi- 
valence heuristic, upon encountering the sentence “the white cat eats slowly”, 
would not merge “slowly” with “the mouse” (as would Distributional Ana- 
lysis), since “MOUSE” and “SLOWLY” would not have the same roles in 
their semantic structures. It should be clear from these examples that the 
Semantics-Induced Equivalence heuristic will, in general, make the wiser 
generalization. 

VII. Anderson’s Language Acquisition System 

The Computer Simulation of Semantics-based Heuristic Language Acquisition 
Heuristics that exploit syntax-semantics correlations, like those that exploit 
properties of sentences alone, are often implemented as computer programs 
(Anderson, 1974, 1975, 1977; Fabens and Smith, 1975; Klein, 1976; Klein 
and Rozencvejg, 1974; McMaster, Sampson, and King, 1976; Reeker, 1976; 
Siklossy, 197 1, 1972). In a sense, these programs are incarnations of the in- 
formal Cognitive Theories of the Schlesinger and Macnamara sort. As such, 
they serve as a testing ground for the adequacy of those theories, especially 
at meeting the Learnability Condition, and can also contribute to the goal of 
specifying more precisely and explicitly the mechanisms that these theories 
implicate. Unfortunately, many of the programs that have been developed 
succumb to the same syndrome that afflicted Klein and Kuppin’s model: 
unreasonable assumptions about the learner and the information available to 
him, ad hoc and unparsimonious learning mechanisms, and dubious success 
at learning. For example, the program of Fabens and Smith (1975) modifies 
its rules in accordance with environmental approval and disapproval, which 
Brown and Hanlon (1970) have shown is probably irrelevant to the learning 
of syntax. Other programs (e.g., Klein, 1976; Reeker, 1976; Siklossy, 197 1, 
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1972) avoid this device but only learn to produce meager, ill-defined frag- 
ments of natural languages, often generating many non-sentences at the same 
time. The exception among these efforts is Anderson’s Language Acquisition 
System (LAS; 1974, 1975, 1977). As we have seen, Anderson has carefully 
defined certain heuristics that his program employs and the properties of 
natural languages that make these heuristics useful. As well, the program can 
acquire well-defined infinite subsets of natural languages, its semantic repre- 
sentations have an independent theoretical motivation, and it avoids for the 
most part psychologically unrealistic strategies. For these reasons, I will dis- 
cuss only Anderson’s simulation from among the many that have been re- 
ported (which in any case rely on heuristics remarkably similar to the ones 
Anderson uses). 

How LAS works 
General architecture 
LAS uses a formalism for semantic representations that Anderson has used 

elsewhere as a theory of information representation in long term memory 
(the Human Associative Memory system (HAM) of Anderson and Bower, 
1973). Its grammar is in the form of an Augmented Transition Network 
(ATN), which is held by many to be a plausible model of human language 
processing (see Kaplan, 1975). The ATN that LAS uses corresponds rule-for- 
rule to a context-free grammar, but can be incorporated more easily into a 
left-to-right sentence recognizer or producer. LAS has a subroutine corres- 
ponding to sentence production, which uses the ATN to convert a semantic 
structure into a sentence. It also has a subroutine that corresponds to sen- 
tence comprehension, which uses the ATN to convert a sentence into its 
semantic structure. Finally, it has a learning program that uses pairs consist- 
ing of semantic structures and sentences to build the ATN piece-by-piece. 
The latter program is the one of interest here. 

Like Kelley’s and Klein and Kuppin’s programs, LAS is driven by the com- 
prehension process. It tries to interpret a sentence from left-to-right with its 
current grammar, and alters parts of the grammar if it fails. If a particular 
rule gets the learner part way in interpreting a sentence, it is the one that will 
be expanded. LAS also forgets the exact sentences that it hears, so that a 
sentence contributes to grammatical development only in the way that it 
alters the grammar as it is being understood. These features give LAS a psy- 
chologically realistic flavor compared to other models I have discussed. 

Use of the Tree-fitting heuristic 
When LAS receives its first sentence-meaning pair, there is no grammar to 

interpret it yet, so it must build the first pieces of the grammar relying en- 
tirely on the Tree-fitting heuristic. But in general, the HAM structure repre- 
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senting the learner’s perception of the situation in which the sentence has 
been uttered is not really suitable for fitting onto the string right away. It 
contains too many sentence-irrelevant propositions, and has no way of indi- 
cating the proposition corresponding to the principle assertion of the sentence 
(see Section VI). Thus the program is forced to compute an intermediate 
representation, called the Prototype Structure, which omits propositions 
whose concepts have no counterparts among the words of the sentence, and 
highlights the principle proposition (in line with supposed pragmatic cues). It 
is this Prototype structure, not the meaning structure itself, that the Tree- 
fitting heuristic tries to fit onto the string of words. Once an acceptable tree 
has been derived by the heuristic, LAS constructs ATN arcs, each one corres- 
ponding to a left-to-right sequence of constituents composing a higher con- 
stituent, and the corresponding rules that map these syntactic constituents 
onto their semantic counterparts. 

USC of the semantics-based equivalence heuristic 
When subsequent pairs come in, LAS tries to interpret the strings using all 

its rules simultaneously. Using the Semantics-Induced Equivalence heuristic, 
it unites into a single class words whose concepts serve the same role in their 
respective HAM structures. Similarly, it merges any two arcs (i.e., higher- 
order constituents) that simultaneously assign the same semantic role to their 
respective sentence constituents. These mechanisms were discussed in Sec- 
tion VI. In addition, LAS will merge two arcs if one is a proper subsequence 
of another, as long as they both specify the same semantic role. For example, 
assume that LAS has induced an arc that will parse sequences like “the 
mouse ” in Figure 3, and that it is forced by a subsequent sentence to con- 
struct an arc that will parse “the mouse that nibbles the house”. Then the 
old arc will be swallowed into the new one automatically (with the last four 
words marked as “optional”). In this way, LAS can construct recursive rules, 
allowing it to generate infinite languages. In the present example, it would 
construct a low-level arc to .parse “the house”; however, this substring can 
already be parsed with the higher-level arc built to parse “the mouse that 
nibbles the house” (since “mouse” and “house” would presumably be merged, 
and the last four words are marked as optional). Consequently it would merge 
the two arcs, ending up with the recursive arc corresponding to the rule 
“noun phrase + the noun that nibbles noun phrase”. Now it can generate 
“the mouse that nibbles the cat that eats the mouse that nibbles the house” 
and so on. 

Finally, LAS has a special heuristic with which it handles the so-called 
“grammatical morphemes” such as articles, auxiliaries, relative pronouns, 
and so on, which have no direct counterparts in the semantic representations. 
This heuristic will be discussed in a later paragraph. 
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Learning powers of LAS 
How well does LAS do? Anderson presents several examples in which LAS 

is faced with artificial languages or fragments of natural languages, all context- 
free, which can be used to describe arrangements of two-dimensional shapes 
of various colors and sizes. In all cases LAS succeeded in acquiring a grammar 
for the language, including infinitely large subsets of English and French, 
after taking in 10-l 5 meaning-sentence pairs. For example, it could handle 
sentences like “the large blue square which is below the triangle is above the 
red circle which is small”, and other sentences using these grammatical con- 
structions. Anderson conjectures that LAS could learn any context-free lan- 
gliage with a semantic system that respected the Graph Deformation Condi- 
tion and the Semantics-Induced Equivalence of Syntax Condition. 

LAS is unquestionably an impressive effort. Anderson is alone in showing 
how a learner with semantics-based heuristics can succeed in learning chunks 
of natural languages in a plausible manner. Furthermore, there are pos- 
sibilities for extending the powers of LAS. If LAS were built like Winograd’s 
(1972) program to converse with another speaker instead of receiving sen- 
tences passively, it would have representational structures that conceivably 
could be useful in acquiring rules for interrogatives, conditionals, impera- 
tives, and so on. And if it had a more childlike semantic representational sys- 
tem, which categorized the world into actors, actions, and recipients of 
actions, possessors and possessed, objects and locations, and so on, its lin- 
guistic abilities might even resemble those of young children (cf., Brown, 
1973). By enriching the semantic system gradually, it might even be possible 
to generate a sequence of stages parallel to the child’s linguistic development, 
which would be a unique accomplishment among formal models of language 
learning (outside of Kelley’s limited attempts). Of course, all of this remains 
to be shown. 

In any case, rather than spelling out the various ways that LAS can be 
extended, I shall focus in this section on the limits of LAS’s abilities, on 
Anderson’s claim that “the weakness of LAS... is sufficiently minor that I 
am of the opinion that LAS-like learning mechanisms, with the addition of 
some correcting procedures, could serve as the basis for language learning” 
(1977, p. 155-l 56). Since LAS is an incarnation of the currently popular 
Cognitive Theory of language learning, Anderson’s claim is an important one. 
If true, it would support the contention that the child’s perceptual and cog- 
nitive representations are sufficiently rich data structures to support language 
acquisition (e.g., Bowerman, 1973; Sinclair-de Zwart, 1969: Schlesinger, 
1971), obviating the need for innate language-specific data structures (e.g., 
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Chomsky, 1965; Fodor, 1966; McNeill, 1966). On this view, the innate con- 
straints on the learner derive only from his cognitive representational struc- 
tures and, as Anderson points out, his tacit assumptions about how these 
correspond to syntactic structures. For this reason 1 will examine LAS’s abil- 
ities in some detail. In particular, I shall scrutinize Anderson’s central claim, 
that most syntactic rules can be derived from distinctions made at the seman- 
tic level, while the rest can be derived with the help of a few miscellaneous 
heuristics. 

Do natural languages obey the Graph Deformation? Condition ? 
This condition, on which the Tree-fitting heuristic depends, decrees in 

effect that natural languages must be context-free, a conclusion that Ander- 
son explicitly supports (despite its near-universal rejection by linguists). There 
are a number of natural language constructions which cross branches, and 
Anderson must find reason to dismiss them as counter-examples to the omni- 
potence of the Tree-fitting heuristic. One example is the “respectively” con- 
struction. As Figures 5(a) and (b) show, the semantic structures for these sen- 
tences cannot be fitted onto the strings without branches crossing. A second 
example can be found in languages that indicate semantic roles by case 
markers instead of by word order (e.g., Russian, Latin, Wolbiri). In these lan- 
guages it is possible for an element that belongs to one phrase to interrupt a 
sequence of elements in a second phrase, provided that the intruding element 
is suitably marked as belonging to its phrase. Anderson cites both these 
counter-examples, and argues that they are atypical constructions, possibly 
acquired by special problem-solving strategies outside the normal language 
induction mechanisms. While the rarity of constructions of the “respectively” 
sort make this conclusion tenable for these constructions, it is less easy to 
forgive the paucity of mechanisms in LAS for acquiring case-inflection rules, 
prevalent in languages other than English, which naturally give rise to con- 
structions with crossing branches. 

A second class of counter-examples consists of discontinuous elements, 
which give rise to crossing syntactic dependencies in a sentence. For example, 
in the sentence “Irving threw the meat out that had green spots”, the 
phrase “the meat” is part of a constituent that includes “that had green 
spots”, whereas the word “threw” is part of a constituent that includes the 
word “out”. Figure 5(c) and (d) show how these branches must cross (similar 
crossing dependencies can occur with auxiliary and tense morphemes under 
certain analyses, see Gross, 1972). Anderson exempts the Tree-fitting heur- 
istic from having to deal with such constructions on the grounds that they 
involve “non-meaning bearing morphemes” which are outside its province. 
But this is not quite true - the morpheme “out” in the sentence in Figure 
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Figure 5. Violations of the Graph Deformation Condition. 

5(d) conveys a different meaning than would the morphemes “up” or 
“around” or “down” if one were substituted in its place. But it is not clear 
how the morpheme “out” would have been mapped onto the semantic struc- 
ture in the first place - if “THROW-OUT” were represented as a unitary 
node, and the morpheme “out” introduced into the sentence by some other 
means, the tree-fitting heuristic would not have to deal with the morpheme. 
As a putative universal for natural languages, the Graph Deformation Condi- 
tion can be criticized in that the HAM structures representing the meanings 
of various sentence types are not specified a priori, but seem to be made up 
as they are needed. For this reason it is hard to disconfirm the Condition 
with the present examples, though. 

Do natural languages permit Semantics-Induced Generalizations? 
The Tree-fitting heuristic has a function other than giving a tree-structure 

to the sentence. The heuristic attaches semantic labels to the branches of the 
tree, and the Semantics-Induced Equivalence of Syntax heuristic uses these 
labels as criteria for merging rules derived from different sentences. These 
heuristics serve LAS well, but only because the subset of English grammar 
and the subset of HAM structures that Anderson has chosen correspond al- 
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most feature for feature. For example, the grammatical rule that specifies 
that sentences consist of a noun phrase and a verb phrase corresponds to the 
breakdown of HAM propositions into a subject and a predicate; the gramma- 
tical rule that breaks the predicate phrase into a spatial preposition and a 
noun phrase corresponds to the breakdown of a HAM predicate into a rela- 
tion and an object, and so on. However, whenever syntax and semantics 
diverge, I will show, LAS errs, either over- or undergeneralizing. 

Semantics-induced undergeneralizations 
LAS’s powers to generate more sentences than it has seen reside in its abil- 

ities to merge the different exemplars of a constituent type into a single class. 
Thus one would want LAS to recognize, say, that (to a first approximation) 
all noun phrases in English. are generated by the same set of rules, regardless 
of the type of sentence or the position in a sentence in which the noun 
phrase is found. However LAS fails to do so even with the restricted subset 
of English it is given. For example, it fails to recognize the equivalence of 
subject noun phrases in sentences using the word “above” with those using 
the word “below”. This is because the concepts “above” and “below” are 
represented identically in the propositions at the semantic level, with the 
subject of such a proposition interpreted by other procedures as the higher 
of the two objects in space. Thus the counterpart to “the square” in “the 
square is above the circle” is the subject in the underlying proposition, where- 
as in “the square is below the triangle” it is the object. For this reason the 
two occurrences of the phrase are mistakenly treated as different syntactic 
units. 

Although Anderson suggests a solution to this particular problem, related 
problems will pop up when different subsets of languages are attempted. This 
is because natural languages frequently use the same constituents to express 
different underlying logical functions (which is one of the chief motivations 
for developing transformational grammars, with their distinction between 
deep and surface structures). Thus the Semantics-Induced Equivalence heur- 
istic would never realize that the different tokens of the phrase “the cop” in 
4Ca-e) 

4. (a) The cop frightens the thief. 
(b) The cop is frightened by the thief. 
(c) The cop tends to like thieves. 
Cd) The cop who arrests thieves... 
(e) The cop who thieves frighten... 

are examples of the same type of sentence constituent, since in the different 
sentences and phrases it functions variously as subject or object of the under- 
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lying proposition, or as part of the principal proposition or one of the sec- 
ondary propositions. LAS would develop ad hoc rules for the different types 
of sentences, and would be unable to conclude that a subject noun phrase in 
an active sentence can also appear as the subject of a passive sentence, a 
“tend’‘-type sentence, and so on. 

One interesting way to remedy this problem would be to posit distinct 
mental predicates corresponding to the different syntactic constructions that 
a verb can enter into. Thus there would be mental predicates for “FRIGHT- 
EN”, “IS-FRIGHTENED-BY”, “TENDS-TO-FRIGHTEN”, “IS-EASY-TO- 
FRIGHTEN”, and so on (which is similar to a proposal Anderson has made 
elsewhere in discussing memory for sentences, see Anderson and Bower, 
1973). Since the subjects of the sentences with all these constructions are 
also the subjects of their underlying propositions at the semantic level, LAS 
would have grounds to merge them. Unfortunately, this raises the problem 
of how the learner could tell when to encode a situation using one type of 
mental predicate rather than another. For example, how would the learner 
know to use the “FRIGHTEN” predicate just when hearing “It is easy to 
frighten the cat”, but the “IS-EASY-TO-FRIGHTEN” predicate when hear- 
ing “That cat is easy to frighten”? This “encoding problem” and its possible 
solutions will be discussed further in Section IX. 

Sertzatltics-induced ovcrgctzeralizutiotzs 

In relying on semantic criteria, LAS also generalizes in cases where it should 
not. For example, the proposition asserting that an entity is square-shaped 
can appear in a sentence either as “the square” or “the square thing”, but 
the proposition asserting that an entity is colored red can appear only as “the 
red thing”. Nonetheless, since the two propositions have the same format, 
LAS overgeneralizes and accepts “the red”. Anderson solves this problem by 
providing LAS with an innate schema for noun phrases, including the stipula- 
tion that a noun phrase must contain at least one noun. If indeed the gen- 
eral form of the noun phrase is innate, it cannot have the format Anderson 
proposes, however, since many noun phrases lack nouns - consider the sub- 
ject noun phrases in the sentences “Jogging exhausts me”, “It is a total bore”, 
and “That he chortles is irritating”. 

A similar overgeneralization problem follows from the fact that verbs with 
similar semantic representations have different case structures, that is, require 
different numbers and arrangements of noun phrases in the sentences in which 
they appear. Thus “give” might appear in a semantic structure with a subject 
and two objects, corresponding to the giver, gift, and recipient. Using this 
structure, LAS could build rules that parsed “Rockefeller gave Brown a mil- 
lion dollars”, with two consecutive noun phrases after the verb; it would also 
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construct rules to parse “Rockefeller gave a million dollars to Brown”, with 
a noun phrase and a prepositional phrase. However when LAS later encoun- 
ters sentences like “The IMF transferred a billion dollars to Ghana”, or 
“Rockefeller donated a Wyeth to the museum”, it would merge “give”, 
“transfer”, and “donate” into a single class, since they would have similar 
roles in their semantic representations, and would mistakenly produce 
“Rockefeller donated the museum a Wyeth , ” “The IMF transferred Ghana a 
billion dollars”, and so on. Anderson does suggest a heuristic that might help 
LAS in learning the case structures of verbs: placing all the concepts that are 
causally related to the verb at the same level of embedding in the Prototype 
structure. This would not help for the present examples, however, since the 
different verbs have the same causal relation to the noun phrases, but have 
different case structures nonetheless. Many similar examples can be found 
in English: “throw” versus “propel”, “show” versus “display”, “teach” 
versus “instruct”, and so on. 

Learnirlg grammatical morphemes 
The class of grammatical morphemes (e.g., articles, inflections, conjunc- 

tions, relative pronouns, etc.) poses special problems for LAS, since they have 
no counterparts in its semantic structures. Anderson argues that learning the 
rules for ordering these terms in the absence of semantic information is not 
problematic, at least in a formal sense. Since grammatical morphemes occur 
in sub-sequences of finite length, they constitute a finite cardinality language, 
which, according to Gold’s theorems, can be learned with neither an infor- 
mant nor a semantic referent. This argument is misleading, however, because 
whether or not a string of grammatical morphemes is acceptable will depend 
on its context. Since the relevant context can be indefinitely long, there 
would be an infinite number of cases for the finite cardinality learner to 
memorize. Thus what the learner faces is not a finite cardinality language 
after all. For example, the occurrence of the string “to which” in sentence 
5(a) is grammatical only because the verb “give”, which can take a preposi- 
tional phrase beginning with “to”, appears later in the sentence (compare the 
same sentence with “spent” in place of “gave”). But as sentences S(b-d) 
show, that verb can be an arbitrary distance away, resulting in an infinite 
number of contexts to learn. 

5. (a) The museum to which he gave a million dollars is in Chicago. 
(b) The museum to which it is obvious he gave a million dollars is in 

Chicago. 
(c) The museum to which I think it is obvious he gave a million dollars is 

in Chicago. 



(d) The museum to which I think without any justification whatsoever it 
is obvious he gave a million dollars is in Chicago. 

Thus learning rules for these classes of items is formally far from a trivial 
matter, and it is worth examining the heuristic solutions to the problem that 
Anderson proposes. 

To begin with, it should be noted that LAS faces a language with few 
grammatical morphemes: only the articles “the” and “a”, the copula “is”, 
and the relative pronoun “which”. The spatial prepositions such as “above” 
are treated as content words, since they correspond directly to nodes in the 
semantic representation, and to simplify matters even further, the expression 
“to the left of’ has been collapsed into the single word “left-of”. With this 
simple language, LAS can survive with a single heuristic: when it encounters 
one or more grammatical morphemes, it brackets them with the content 
word immediately to the right, creating a new constituent. 

Problems with the grummutical morpheme heuristic 

Although this heuristic works well enough to prevent LAS from making 
any gross errors, it prevents it from making important generalizations as well. 
For example, LAS cannot recognize the equivalence in its grammar of predi- 
cate phrases in the main clause of a sentence and predicate phrases in relative 
clauses, because the latter have the word “which” grafted onto them. This 
also seems to be the reason that LAS fails to merge its class for prenominal 
adjectives (“rod square”) with its identical class for predicate adjectives (“the 
square is red”). In any case, the heuristic clearly would not work for larger 
subsets of natural languages. As Anderson notes, in sentences like 

6. The woman that he ran after is nimble. 

LAS would create the nonsense constituent “after is nimble”, leading to 
many possibilities for error (e.g., “The woman he loved after is nimble”). 

“Correctirlg procedurcs”j~w liurzdlirlg grummutical morphemes 

Anderson does suggest remedies for some of these problems. For example, 
the first problem could be solved by allowing LAS to merge arcs with iden- 
tical subconstituents, whether or not one arc is wholly contained in the other. 
However this procedure would still not make the required generalization in 
the general case - ‘it would not help detect the similarities between main 
clauses and other sorts of relative clauses, such as those in which the objects 
have been deleted. For example, in 7(b), there is no constituent correspond- 
ing to the “the monster devoured” in 7(a), as the brackets indicate. Nonethe- 
less one would want a learner to be able to generalize that whatever can be 
expressed in a main clause like 7(b) 
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7. (a) The cookie that the monster devoured is huge. 
(b) (The monster) (devoured (the cookie)) 

can also be expressed in a relative clause like the one in 7(a). 
Anderson also suggests that redundant word classes, such as the predicate 

and prenominal adjective classes in our example, should be merged if they 
have enough members in common. But this would only lead to trouble. In 
natural languages, many if not most nouns can also serve as verbs and adjec- 
tives, but it would be disastrous to merge those classes outright, since many 
adjectives and verbs cannot serve as nouns. 

Finally, Anderson suggests that the incorrect parse of sentences like 6 
could be avoided if the learner would exploit the pause often found after the 
preposition in spoken speech as a cue to the correct location of the constitu- 
ent boundary. However, natural speech is full of pauses that do not signal 
phrase boundaries (see Rochester, 1973), so such a heuristic would not, in 
general, do much good. 

Conclusion 
In sum, careful scrutiny of the learning mechanisms of LAS does not bear 

out Anderson’s claim that such mechanisms are sufficient to learn natural 
languages. We have seen a number of cases in which the semantics-based heur- 
istics are inadequate in principle to learn important features of English. This 
would not be a serious criticism if there were principled ways of extending 
LAS to handle these features. But virtually all of Anderson’s proposals for 
extending LAS would at best work for the particular glitches they were de- 
signed to fix, and would be ineffective if applied to larger subsets of natural 
languages. 

None of this diminishes the importance of Anderson’s contribution. In the 
traditional psycholinguistic literature, the “Cognitive” theory of language 
learning is usually discussed in such vague terms that it is impossible to evalu- 
ate. In embodying this theory in a computer program, Anderson has shown 
what assumptions the theory rests on, which aspects of language learning the 
theory can account for, and which aspects are beyond its reach. In Section 
IX, I will discuss further the implications of LAS and other models for theo- 
ries of human language learning. 

VIII. A Theory of Learning Transformational Grammars 

The features of natural language that give LAS the most trouble are precisely 
those features that cannot easily be handled by context-free grammars, and 
that motivated the development of transformational grammars (Chomsky, 
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1957, 1965). Examples are discontinuous constituents, “respectively’‘-type 
constructions, case- and complement structures of various verbs, the diver- 
gence of semantic roles and syntactic constituent structures, the placement 
of “grammatical morphemes”, and generalizations that hold across related 
syntactic constructions. An adequate theory of language learning will have to 
account for the acquisition of languages with these sorts of properties. Henry 
Hamburger, Kenneth Wexler, and Peter Culicover have taken a large step in 
this direction by constructing a mathematical model which incorporates some 
reasonable assumptions about the language learner, and which they prove is 
capable of learning transformational grammars of a certain type (Hamburger 
and Wexler, 1975; Wexler, Culicover, and Hamburger, 1975; Culicover and 
Wexler, 1977). _ 

Central to Hamburger, Wexler, and Culicover’s theory is the assumption 
that the learner is innately constrained to entertain hypotheses of a certain 
sort, and is therefore capable of acquiring only certain types of languages. As 
I have mentioned, this assumption could conceivably enable an enumerative 
language learner to learn a language with access only to a sample of sentences. 
The assumption is also implicit in a weak form in the heuristic approach to 
language learning, and is explicitly embraced by Anderson when he claims 
that the learner “assumes” that the target language conforms to the Graph 
Deformation Condition and to the Semantics-Induced Equivalence of Syntax 
Condition. But Hamburger et al., take the strongest view, originally proposed 
by Chomsky (1962, 1965), that innate, language-specific constraints cause 
the child to consider only a very narrowly-defined class of transformational 
grammars. Hamburger, Wexler, and Culicover’s feat was to define these con- 
straints in a precise way, show why they contribute to learnability, and make 
the case that natural languages fall into the class they define. 

Hamburger et al., begin with a version of Chomsky’s transformational 
grammar, in which a set of context-free base rules generates a deep structure 
tree which transformations operate upon to produce a sentence. The base 
rules can generate arbitrarily large deep structures only by rewriting sentences 
within sentences, that is, by repetitively applying one of the rules that re- 
writes the “S” symbol. Each occurrence of an “S” delineates a level in the 
deep structure. Transformational rules are applied first at the lowest level 
(i.e., the most deeply embedded subsentence), then to the second lowest 
level, and so on. 

Learnability of transformational grammars from a text 
Wexler and Hamburger (1973) first attempted to prove that a constrained 

class of transformational grammars was identifiable in the limit from a sample 
of sentences (see the section on “Constraining the Hypothesis Space” in 



Formal models of’ language learning 263 

Section IV). They made the assumption, known to be overly strong, that all 
languages have identical base rules and differ only in their transformational 
rules. Thus they made the base rules innate, and required the learner to iden- 
tify in the limit a set of transformations that generated the target language. 
This they provec: to be impossible. Therefore, in their next attempts (Ham- 
burger and Wexler, 1975; Wexler, Culicover, and Hamburger, 1975) they 
assumed, with Anderson and the “Cognitive” theorists, that the child has 
simultaneous access to a string and its meaning, and must learn rules that 
translate one into the other. 

Semuntic represeiztutions and the Invariance Principle 
In Hamburger et al.‘s model, a sentence meaning is represented by a tree 

structure that has the same hierarchical breakdown of constituents as the 
deep structure of the sentence, but with no particular left-to-right ordering 
of the constituents (such a structure is similar to Anderson’s “Prototype 
structure”). Since deep structure constituents are ordered differently in dif- 
ferent languages, the first task for the learner is to learn the base rules which 
define the orderings his language uses. Wexler and Culicover note that this 
can be accomplished in a number of simple ways (in fact, Anderson’s Tree- 
fitting heuristic is one such way). Like Anderson, they point out that this 
assumes that in all natural languages the deep structures will preserve the 
hierarchical connectivity of nodes in semantic structures, differing only in 
their linear order (i.e., branches may not cross, nor may links be severed and 
re-attached elsewhere). They justify this Invuriarzce Corzdition (similar, of 
course, to Anderson’s Graph Deformation Condition) by showing that out of 
all the combinatorial possibilities for ordering constituents of a certain type 
in deep structures, only those that respect the Invariance Condition are found 
in natural languages (over 200 of which they examine, Culicover and Wexler, 
1974). 

The leurnirlg procedure 
From then on the learner must hypothesize a set of transformations, or a 

transformational component, that in combination with the base rules gener- 
ates the target language. The procedure is simple. The learner undergoes an 
infinite series of trials in which he is presented with a meaning-sentence pair 
and is required to guess a grammar. For each pair, the learner applies his cur- 
rent transformational rules to the deep structure (which he computes from 
the meaning structure), and compares the result against the input string. If 
they match, the learner leaves his grammar untouched and proceeds to the 
next pair. If they do not match, the learner randomly decides between two 
courses of action. He can discard, at random, any of the transformations he 
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used to derive the incorrect string; or, he can hypothesize a set consisting of 
all the transformations capable of transforming the deep structure to the 
input string in conjunction with the rest of the grammar, and select one of 
these transformations at random for inclusion in the grammar. Hamburger 
et al., prove that with suitable constraints on the transformations used by 
the target language (and hypothesized by the learner), the learner will con- 
verge on a correct grammar for the language (i.e., the probability that the 
learner will have guessed a correct grammar becomes arbitrarily close to 1 as 
time passes). The proof is long and complex and will not be outlined here. 
Instead I will summarize how the constraints that Hamburger et al., propose 
function to guarantee learnability. This, of course, is the crux of the Chom- 
skian claim that learnability considerations favor a strongly nativist theory 
of language acquisition. 

Proving Icarnabilit) 
As I have mentioned in Section IV, restricting the learner’s hypothesis 

space only yields learnability if the intersection between the grammars in the 
hypothesis space and the grammars consistent with the sample becomes 
smaller and smaller as learning proceeds (see Figure 2). Hamburger et ul. 
must show that when the learner has guessed an incorrect transformational 
component, he need not wait an arbitrarily long time before discovering his 
error, that is, encountering a semantic structure that the Component does 
not properly transform into the corresponding sentence. This in turn implies 
that the learner must not have to wait until an arbitrarily complex meaning- 
sentence pair appears in the sample before knowing that his transformational 
component is incorrect, since by the laws of probability he would have to 
wait an arbitrarily long time for an arbitrarily complex pair. In other words, 
if the learner has an incorrect transformational component, that component 
must make an error on a sentence-meaning pair that is no more complex 
than a certain bound (where complexity is measured by the number of S- 
nodes or levels in the deep structure). 

This condition is not satisfied for unconstrained transformational gram- 
mars. In transformational grammars, each transformation is triggered by a 
particular configuration of symbols in a deep structure, or structural descrip- 
tiolz. If a structural description can be arbitrarily complex for a transforma- 
tion in the grammar, then the learner would have to wait until a meaning- 
sentence pair of that (arbitrary) complexity appeared in the sample before 
having occasion to hypothesize such a transformation. It would then be im- 
possible to prove that the probability of the learner having hypothesized a 
complete, correct grammar approaches unity with increasing exposure to the 
sample. So Hamburger et al., proposed the following constraint on transfor- 
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mations: no transformation may have a structural description that refers to 
symbols in more than two adjacent levels in the deep structure. Consider the 
deep structure-sentence pair in Figure 6 (the example has been simplified 
drastically from Chomsky, 1973). Assuming that the learner’s transforma- 
tional component does not yet correctly map one onto the other, the learner 
could hypothesize something like the following transformation (assuming 
that other transformations place the grammatical morphemes properly): 

NP VP NP VP NP VP what -+ what NP VP NP VP NP VP. 

However this transformation would be forbidden by Hamburger et al’s con- 
straint, because the symbols on the left hand side span across three levels in 
the deep structure. Instead, the learner could hypothesize something like the 
following: 

NP VP what + what NP VP 

which, applied successively from the deepest level upward, would produce 
the same string. (It is interesting to note that in this example the learner 
would not even have had to wait until encountering a pair this complex to 
hypothesize the transformation - an interrogative sentence with one level 
would have sufficed.) Hamburger et al., argue that virtually all transforma- 
tions in English and other languages conform to this condition, which they 
call the Binary Principle. Although they proposed the principle because, with- 
out it, they could not have proved learnability, they point out that Chomsky 
(1973) independently proposed an identical constraint, the Subjacenc~~ Con- 
dition, which he justified on descriptive grounds. That is, there seems to be 
independently motivated evidence that the Binary Principle is true of natural 
languages. 

Figure 6. Deep structure (A) and string (B) illustrating the Binary Principle. 
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The Freezing Principle 
The Binary Principle is not sufficient, however, to guarantee that an incor- 

rect transformational component will make a telltale error on a meaning- 
sentence pair less complex than a certain bound. The base rules of a grammar 
can generate only a finite number of structures within a single level, by defi- 
nition. Together with the Binary Principle, this would seem to ensure that 
input data of bounded complexity would suffice to exhaust all the structural 
descriptions that could trigger transformations. Unfortunately, whenever a 
transformation is applied at one level, it can alter the configuration of sym- 
bols within another level, creating new potential structural descriptions for 
transformations. Thus a series of transformations starting arbitrarily far down 
in a deep structure can alter the configuration of symbols within another 
level (as, in fact, the example in Figure 6 showed), creating new potential 
structural descriptions for transformations. A learner whose transformational 
component was in error only when applied to this altered configuration 
would never discover the error until coming across this arbitrarily complex 
structure. To remedy this situation, Culicover, Wexler, and Hamburger (1975) 
proposed a new constraint, the Freezing Principle, which forbids a transfor- 
mation to apply to a configuration of symbols that could only have 
been created by the previous application of another transformation. The arti- 
ficial example in Figure 7 shows how the constraint works. Say the learner 
must transform the deep structure 7(a) into the string 7(c), and already has a 
transformation that reverses the two morphemes C and B, as shown in 7(b). 
Now he must coin a transformation that reverses the morphemes A and B. 
The following transformation, for example, would accomplish this reversal: 

ABDC + BADC. 

Ifowever, the Freezing Principle forbids this hypothesis, since it refers to the 
symbol sequence DC, which was not generated by a base rule but was created 
by another transformation. Instead, the learner can hypothesize the following 
transformation:3 

AB + BA. 

With the Binary and Freezing Principles, Hamburger, Wexler, and Culicover 
not only prove that the learner will converge on a correct grammar, but that 

3As the eumple suggest, the Binary and Freezing Principles tend to reduce the context-sensitivity 
of rules in grammars by preventing large parts of tree structures from entering into the structural de?- 
criptions of transformations. This is not a coincidence, since in general contest-free rules are more 
easily lcarnablc than context-sensitive rules. SW also Kaplan (1978) who argues that the reduction of 
contcut-sensitivity afforded by the Subjacency (i.e., Binary) Principle contributes to efficient sentence 
parsing. 
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Figure 7. Deep structure (A) and string (C) illustrating the Freezing Principle. 

he can do so without even having to consider any structure with more than 
two levels of embedded sentences (i.e., three S-nodes). 

Of course, Hamburger, Wexler, and Culicover must show that their con- 
straint does not prevent their learner from acquiring any natural language. In 
Wexler, Culicover, and Hamburger (1975) and Culicover and Wexler (1977), 
examples of many sorts of English constructions are adduced to support the 
contention that natural languages obey the Freezing Principle. Moreover, 
Wexler et al. argue that in some cases the Freezing Principle does a better job 
than other constraints proposed in the linguistics literature at explaining why 
certain types of sentences are judged ungrammatical, and that in other cases, 
it mandates a choice between competing, hitherto equally plausible theories. 

An evaluation 
In evaluating the Hamburger et al., model, it is important to note that I have 
changed the emphasis somewhat from their presentation. Their chief goal 
was to develop an “explanatorily adequate” linguistic theory (see Chomsky, 
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1965), which not only accounts for various linguistic phenomena, but expluins 
why they must be one way and not another. Thus Hamburger, Wexler, and 
Culicover claim that the reason why natural languages conform to the Invari- 
ance, Binary, and Freezing Principles is that if they did not, they would not 
be learnable. Their model of a language learner was their means of justifying 
the claim. 

Secondarily, they present their learning model as a first step toward an 
adequate theory of language learning (which is what I have been emphasizing). 
As such, they can claim no more than that their model is (at least) “minimally 
plausible”. It requires no information about non-sentences, does not have to 
remember the entire sample, requires sentences no more complex than those 
with two levels of subsentences, employs semantic information in learning, 
processes sentences one at a time, and changes its gramma rule by rule. In 
other words, it does not flagrantly contradict some of the obvious facts of 
human language development. However, since the model is only a specifica- 
tion of the boundary conditions of a theory of language learning (i.e., they 
are claiming that the child’s hypotheses must be no less constrained than 
those of the model), many features would have to be fleshed out before it 
could be considered any more than “minimally plausible”. First, there is no 
indication at present that the learner would converge in a time-span compar- 
able to a human childhood. It seem inefficient and implausible to have the 
child enumerating sets of transformations and mentally rolling dice to decide 
which to keep or discard. What is needed is a theory showing how the child’s 
hypotheses are guided in a more direct way by the meaning-sentence pair 
under consideration, and how these hypotheses are computed during the left- 
to-right processing of a sentence. Third, unordered deep structures are ques- 
tionable candidates for a theory of the child’s representational system (al- 
though this will be discussed further in Section IX). Finally, we are left with 
few suggestions as to how the transformational component, once acquired, 
is used in producing and comprehending sentences. 

In any case the Hamburger, Wexler, and Culicover model is a unique and 
extremely impressive achievement. Theirs is the only model that is capable 
of learning natural languages in all their complexity and that at the same 
time is not blatantly counter to what we know about the child and his learn- 
ing environment. They also have clarified and justified, more clearly than 
anyone else has, two central tenets of transformational linguistics: that con- 
siderations of language learnability can dictate a choice between rival linguis- 
tic theories, and that learnability considerations imply strong innate con- 
straints of a certain type on the child’s language learning faculties. As they 
put it, “The bridge that Chomsky has re-erected between psychology and 
linguistics bears two-way traffic” (Hamburger and Wexler, 1975). 
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IX. Implications for Developmental Psycholinguistics 

Toward a Theory of Language Learning 
Among the models of language learning that 1 have considered, two seem 
worthy upon examination to serve as prototypes for a theory of human lan- 
guage acquisition. Anderson’s LAS program roughly meets the Cognitive, 
Input, and Time Conditions, while faring less well with the Learnability and 
Equipotentiality Conditions. Hamburger, Wexler, and Culicover’s transfor- 
mational model meets the Learnability and. Equipotentiality Conditions 
(clearly), and the Input Condition (perhaps), while faring less well with the 
Cognitive and Time Conditions. I hope it is not too banal to suggest that we 
need a theory that combines the best features of both models. It must incor- 
porate a psychologically realistic comprehension process, like Anderson’s 
system, since language acquisition is most plausibly thought of as being driven 
by the comprehension process. But at the same time, the model’s semantic 
structures must be rich enough, and the hypothesization procedure con- 
strained enough, that any natural language can be shown to be learnable 
(like the Hamburger et al., model), so that the model does not become buried 
under a pile of ad hoc, semi-successful heuristics when it is extended to more 
and more linguistic domains. Of course, developing such a theory has been 
hampered by the lack of a suitable theory of language itself, one that both 
gives a principled explanation for linguistic phenomena in various domains 
and languages, and that can be incorporated in a reasonable way into a com- 
prehension model (see Bresnan, 1978, for a step in this direction). Of course, 
here is not the place to attempt to present a new theory synthesizing the best 
features of previous efforts. Instead, I will attempt to point out the implica- 
tions that the formal study of language learning has for current issues in 
developmental psycholinguistics. 

Developmental Psycholinguistics and Language Acquisition Devices 
Current attitudes toward language acquisition models among developmental 
psycholinguists have been strongly influenced by the fate of a research frame- 
work adopted during the 1960’s that went under the name of the Language 
Acquisition Device, or LAD. There were in fact two different meanings to the 
expression Language Acquisition Device, and I think it is important to dis- 
tinguish them. In one formulation (Chomsky, 1962), the child was idealized 
as an abstract device that constructed rules for an unknown language on the 
basis of a sample of sentences from that language; characterizing the workings 
of that “device” was proposed as a goal for linguistics and psychology. As an 
analogy, we could think of a physiologist interested in electrolyte regulation 
who idealized the brain as “a bag of salt water”, proceeding then to study 
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the structure of the membrane, concentration of ions, and so on. Of course, 
in this sense, I have been talking about language acquisition devices through- 
out the present paper. However there is a second, stronger sense in which 
LAD is taken to describe a specific theory of language acquisition (e.g., Clark, 
1973; Levelt, 1973). In this sense (Fodor, 1966; McNeill, 1966), the child is 
said to possess an innate mental faculty containing highly specific knowledge 
about transformational grammars, which extracts deep structures from the 
speech around him and adopts transformational rules, one at a time, culmi- 
nating in a transformational grammar for the language. Pursuing the analogy 
with physiology, LAD would correspond in this sense to our physiologist 
proposing that the brain accomplished electrolyte regulation by means of a 
special purpose structure, “a bag of salt water”, with various properties. In 
support of this theory, it was claimed that the child based his learning on a 
sample of speech composed largely of fragments and complex, semi-gramma- 
tical expressions (Chomsky, 1965), that the early utterances of the child dis- 
played mastery of highly abstract syntactic relations (McNeil4 1966), and 
that the linguistic progress of the child seemed to reflect the accretion of 
transformations (e.g., Brown and Hanlon, 1970). However the entire approach 
quickly fell into disfavor when it was found that the speech directed to chil- 
dren was well-formed and structurally simple (Snow, 1972), that the child 
might exploit semantic information in addition to sentences themselves (e.g., 
Macnamara, 1972), that the early speech of children might be better broken 
down into “cognitive” or semantic relations than into abstract syntactic ones 
(e.g., Bowerman, 1973; Brown, 1973), and that in many cases children 
learned transformationally complex constructions before they learned their 
simpler counterparts (e.g., Maratsos, 1978). As a result, LAD has been aban- 
doned by developmental psycholinguists as a theory, and in its place I think 
there has developed a rough consensus that semantic and pragmatic informa- 
tion, together with the simplified speech of parents, allows children to learn 
language by using general cognitive skills rather than a special language- 
specific faculty. However, LAD has also been rejected in its more general 
sense as a problem to be addressed, and it also seems to me that most debates 
in developmental psycholinguistics are, unfortunately, no longer carried out 
with an eye toward ultimately specifying the mechanisms of syntax acquisi- 
tion. When specific proposals concerning such mechanisms are considered, I 
shall argue, the substance of many of these debates can change significantly. 

Nativism versus Empiricism: Two Extreme Proposals 
Formal results from the study of language learnability give us grounds for 
dismissing quite decisively two general proposals concerning what sort of 
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mechanisms are necessary and sufficient for language learning, one empiricist, 
one nativist. 

The extreme empiricist proposal is that there are no language-specific a 
priori constraints on the types of rules that humans can acquire. In this vein, 
it is argued that once a sufficient number of sentences has been observed, 
languages can be learned by “general multipurpose learning strategies” 
(Putnam, 1971), by “discovery procedures” (Braine, 1971), or by “learning 
algorithms” like a “discretizer-plus-generalize? that “extracts regularity 
from the environment” (Derwing, 1973). As I have mentioned, Gold’s enu- 
meration procedure is the most powerful imaginable realization of a general 
learning algorithm. Nevertheless, even this procedure is inadequate in prin- 
ciple to acquire rules on the basis of a sample of sentences. And if the cri- 
terion for “acquisition” is weakened (by requiring only approachability, 
approximations to the target language, etc.), then learning is possible, but 
not within a human lifespan. 

At the other extreme is the proposal that innate knowledge of the proper- 
ties of natural languages, especially those of deep structures, allows the child 
to learn a language from a sample of sentences (e.g., Fodor, 1966; McNeill, 
1966). In one of Hamburger and Wexler’s early models (Wexler and Ham- 
burger, 1973), they imposed constraints on the learner’s hypotheses that 
were known to be unrealistically stringent (e.g., that all languages share iden- 
tical deep structure rules). Nevertheless they proved that this class of lan- 
guages is unlearnable on the basis of a sample of sentences, and therefore, 
that the same must be true of classes that are specified more weakly (and 
hence more realistically). Of course, it is still possible that a different sort of 
innate constraint might guarantee learnability, but this will remain a matter 
of speculation until someone puts forth such a proposal. 

Problems for the Cognitive Theory of Language Acquisition 
The inability of these procedures to induce grammars from samples of sen- 
tences suggests strongly that semantic and pragmatic information is used in 
language learning. The moderate success of the models of Anderson and of 
Hamburger et al., also lends credence to this conclusion. However, despite the 
great popularity of the Cognitive Theory among developmental psycholin- 
guists, there has been little discussion of what I believe to be the foundation 
of the theory: the precise nature of the child’s internal representations. The 
Cognitive Theory requires that children have available to them a system of 
representational structures similar enough in format to syntactic structures 
to promote language learning, and at the same time, flexible and general 
enough to be computable by children’s cognitive and perceptual faculties on 
the basis of nonlinguistic information. Until we have a theory of the child’s 



mental representations that meets these conditions, the Cognitive Theory 
will remain an unsupported hypothesis. Unfortunately, designing a represen- 
tational system with the desired properties will be far from a simple task. 
The two main problems, which I call the “encoding problem” and the “for- 
mat problem”, pit the Cognitive Condition against the Learnability and Equi- 
potentiality Conditions. 

The etlcoditlg problem 
This problem is a cpnsequence of the fact that languages can describe a 

situation in a number of ways, and that humans can perceive a situation in 
a number of ways. One might plausibly attribute many different representa- 
tional structures to a child perceiving a given situation, but only one of these 
structures will be the appropriate one to try to convert into the sentence 
being heard simultaneously. Barring telepathy, how does the child manage 
to encode a situation into just the structure that underlies the sentence that 
the adult is uttering? 

Consider an earlier example. Anderson assumes that when a child sees, say, 
a white cat eating a mouse, his mind constructs a structure something like 
the one in Figure 3(a). This is fortunate for the child (and for the model- 
builder), since in the example the sentence arriving concurrently happens to 
be “The white cat eats a mouse”, whose meaning corresponds to that struc- 
ture. But what if the sentence were “The mouse is being eaten by the cat”, 
“That’s the second mouse that the cat has eaten”, “Some cats don’t eat mice”, 
“What’s that white cat doing with the mouse?“, and so on? To put it differ- 
ently, assuming that the original sentence was the one uttered, what if the 
child were to have constructed a cognitive structure containing propositions 
asserting that the mouse was ‘all gone’, or that the cat and mouse were play- 
ing, or that the mouse looked easy for the cat to eat, and so on? In any of 
these cases, the child would face the task of trying to map a meaning struc- 
ture onto a string with which it has only a tenuous connection. Thus the 
semantic representation would offer few clues, or misleading ones, about 
how to hypothesize new rules.4 

4Dan Slobin (1978; personal communication) has pointed out that the child faces a similar prob- 
lem in learning the morphology of his language. Natural languages dictate that certain semantic fea- 
tures of the sentence referent (e.g. number, person, gender, definiteness, animacy, nearness to the 
speaker, completedness, and so on) must be signalled in prefixes, suffices, alternate vowel forms, and 
other means. However, thesefeaturesare by no means all that a child could encode about an event: the 
color, absolute position, and texture of an object, the time of day, the temperature, and so on, though 
certainly perceptible to the child, are ignored by the morphology of languages, and hence should not be 
encoded as part of the semantic structure that the child must learn to map onto the string. To make 
matters worse, the morphological rules of different languages select different subsets of these features 
(continued opposite) 
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I have already mentioned that Anderson would face this problem if he 
were to multiply the number of available mental predicates that correspond 
to a given verb, in order to foster certain generalizations. Hamburger et al. 

face a similar problem. In their model, the structures underlying synonymous 
sentences, such as actives and passives, are presumably identical except for a 
marker triggering a transformation in cases like the passive (since each trans- 
formation is obligatorily triggered by some deep structure configuration). 
Again, it is not clear how the child knows when to insert into his semantic 
structure the markers that signal the transformations that the adult happens 
to have applied. 

Possible solutions to the encoding problem 
I see three partial solutions to the encoding problem that together would 

serve to reduce the uncertainty associated with typical language learning situ- 
ations, ensuring that the child will encode situations into unique representa- 
tions appropriate to the sentences the adult is uttering. The first relies on the 
hypothesis that the representational system of the child is less powerful and 
flexible than that of the adult, and is capable of representing a given situation 
in only a small number of ways. Thus in the preceding example, the child is 
unlikely to encode the scene as propositions asserting that the mouse was 
not eating the cat, that all cats eat mice, etc. As the child develops, presum- 
ably his representational powers increase gradually, and so does the range of 
syntactic constructions addressed to him by his parents. If, as is often sug- 
gested (e.g., Cross, 1977), parents “fine-tune” their speech to the cognitive 
abilities of their children, that is, they use syntactic constructions whose 
semantics correspond to the representations most likely to be used by the 
child at a given moment, then the correspondence between the adult’s sen- 
tence meaning and the child’s encoding of the situation would be closer than 
we have supposed. 

The second solution would posit that the child’s social perception is acute 
enough to detect all the pragmatic or communicative differences that are 
concurrently signaled by syntactic means in different sentences (see Bruner, 
1975). That is, the child knows from the conversational context what the 
adult is presupposing, what he or she is calling attention to, what is being 
asserted of what, and so on. For example, the child must not only see that 

to signal obligatorily, and disagree further over which features should be mapped one-to-one onto 
morphological markers, and which sets of features should be conflated in a many-to-one fashion in 
particular markers. Thus there has to be some mechanism in the child’s rule-hypothesization faculty 
whereby his possible conceptualizations of an event are narrowed down to only those semantic fea- 
tures that languages signal, and ultimateiy, down to only those semantic features that his target lan- 
guage signals. 



the cat is eating the mouse, but must know that the adult is asserting of the 
cat that it is eating a mouse, instead of asserting of the mouse that it is disap- 
pearing into the cat, or many other possibilities. (As mentioned earlier, An- 
derson used this rationale in developing LAS, when he marked one of the 
propositions in each semantic structure as the intended “main proposition” 
of the sentence.) If this line of reasoning is correct, strong conditions are im- 
posed both on the language and on the learner. The syntax of languages must 
not allow synonymy, in a strict sense: any two “base” structures (i.e., Ander- 
son’s Prototype structure or Hamburger et d’s deep structure) that do not 
differ semantically (i:e., instantiate the same propositions) must differ prag- 
matically in some way. Conversely, the pragmatic and perceptual faculties of 
the child must be capable of discriminating the types of situations that occa- 
sion the use of different syntactic devices. 

The third solution would equip the child with a strategy that exploited 
some simple property of the sentence to narrow down the possible interpre- 
tations of what the adult is asserting. Anderson implicated a strategy of this 
sort when LAS examined the set of words in a sentence and retained only 
the propositions in its meaning structure whose concepts corresponded to 
those words. In the present example, the child might always construct a pro- 
position whose subject corresponds to the first noun in the sentence, and 
then choose (or, if necessary, create) some mental predicate that both corres- 
ponds to the verb and is consistent with his perception of the scene. Thus, 
when hearing an active sentence, the child would construct a proposition 
with the cat as the subject and “EATS” as part of the predicate; when hearing 
the passive version, the proposition would have the mouse as the subject and 
“IS-EATEN-BY” as part of the predicate.5 One can even speculate that such 
a strategy is responsible for Bever’s (1970) classic finding that children of a 
certain age interpret the referent of the first noun of both active and passive 
sentences as the agent of the action designated by the verb. The children may 
have set up the concept corresponding to the first noun as the subject of a 
proposition, but, lacking mental predicates like “IS-EATEN-BY” at that 
stage in their development, they may have mistakenly chosen predicates like 
“EATS” by default. 

I hope to have shown how consideration of the requirements and implica- 
tions of formal theories of language learning (in this case, those of Anderson 
and of Hamburger et al.) lead one to assign more precise roles to several 
phenomena studied intensively by developmental psycholinguists. Specific- 

‘This example follows the Anderson model with the “multiple predicate” modification I suggested. 
In the Hamburger ef al. model, the child could insert a “transformation marker” into his deep struc- 
ture whenever the subject of the deep structure proposition was not the fist noun in the sentence. 
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ally, I suggest that the primary role in syntax learning of cognitive develop- 
ment, “fine-tuning” of adult speech to children learning language, knowledge 
of the pragmatics of a situation, and perceptual strategies is to ensure that 
the child encodes a situation into the same representational structure that 
underlies the sentence that the adult is uttering concurrently (cf. Bruner, 
1975; Bever, 1970; Sinclair de-Zwart, 1969; and Snow, 1972; for different 
interpretations of the respective phenomena). 

The Format Problem 
Once we are satisfied that the child has encoded the situation into a unique 

representation, corresponding to the meaning of the adult’s sentence, we 
must ensure that that representation is of the appropriate format to support 
the structural analyses and generalizations required by the learning process. 

To take an extreme example of the problem, imagine that the study of 
perceptual and cognitive development forced us to conclude that the internal 
representations of the child were simply lists of perceptual features. Using a 
semantics-based generalization heuristic, the learner would have no trouble 
merging words like “cat” and “mouse”, since both are objects, furry, animate, 
four-legged, etc. But the learner would be unable to admit into this class 
nouns like “flutter” or “clang”, which have no perceptual features in com- 
mon with “cat”, nor “fallacy” or “realization”, which have no perceptual 
features at all. The difficulties would intensify with more abstract syntactic 
structures, since there are no conjunctions of perceptual features that corres- 
pond to noun phrases, relative clauses, and so on. The problem with this 
representational format is that even if it were adequate for perception, it is 
not adaptable to syntax learning. It does not provide the units that indicate 
how to break a sentence into its correct units, and to generalize to similar 
units across different sentences. 

In other words, what is needed is a theory of representations whose ele- 
ments correspond more closely to the elements of a grammar. In Anderson’s 
theory, for example, a representation is composed of a “subject” and a “pre- 
dicate”, which in turn is composed of a “relation” and an “object”. These 
correspond nicely to the syntactic rules that break down a sentence into a 
noun phrase and a verb phrase, then the verb phrase into a verb and another 
noun phrase. Furthermore, propositions encoded for different situations in 
which syntactically similar sentences would be uttered would all have the 
same format, regardless of whether they represent furry things, square things, 
events, actions, abstract mathematical concepts, or other propositions. Ham- 
burger et al., posit a cognitive representation with a format even more suit- 
able to language learning: unordered deep structures. This is one of the rea- 
sons why their model is more successful at acquiring syntactic rules than 
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LAS is. In sum, these theorists posit that the syntax of the language of thought 
is similar to the syntax of natural languages. 

However, this solution might create problems of its own. It is possible for 
theorists to use “cognitive” representations with a format so suitable to syn- 
tactic rule learning that the representations may no longer be plausible in a 
theory of perception or cognition. To take a hypothetical example, in stan- 
dard transformational grammars a coordinated sentence such as “Jim put 
mustard and relish on his hot dog” is derived from a two-part deep structure, 
with trees corresponding to the propositions “Jim put mustard on his hot 
dog” and “Jim put relish on his hot dog”. However a theory of cognitive or 
perceptual representations based on independent evidence (e.g., reaction 
times, recall probabilities, etc.), when applied to this situation, might not call 
for two separate propositions, but for a single proposition in which one of 
the arguments was divided into two parts, corresponding to the two con- 
joined nouns (which is the way it is done in Anderson and Bower, 1973, for 
example). Cases like this, if widespread and convincing, would undermine 
Hamburger et al’s premise that unordered deep structures are plausible as 
cognitive representations. 

In this vein, it is noteworthy that even though Anderson’s semantic struc- 
tures were lifted from his theory of long term memory, they too are more 
similar to linguistic deep structures than those of any other theory of memory 
representation, incorporating features like a binary subject-predicate division, 
distinct labels for each proposition, and a hierarchical arrangement of nodes 
(cf., Norman and Rumelhart, 1975; Winston, 1975). In fact, many of these 
features are not particularly well-supported by empirical evidence (see Ander- 
son, 1976), and others may be deficient on other grounds (see Woods, 1975). 
Concerning other computer models in which “the designer feeds in what he 
thinks are the semantic representations of utterances”, McMaster etal. (1976, 
p. 377) remark that “the risk is that [the designer] will define semantics in 
such a way that it is hardly different from syntax. He is actually providing 
high-level syntactic information. This gives the grammar-inferrer an easy 
task, but makes the process less realistic...“.6 

Irnplicatiom of the format problem 
Faced with possibly conflicting demands on a theory of the form of men- 

tal representation from the study of language learning and the study of other 

‘This discussion has assumed that the language-specific structures posited as cognitive representa- 
tions are specific to languages in general, not to particular languages. If the representations arc tailored 
to one language (e.g., when predicates in LAS’s propositions take the same number of arguments as 
the verb they correspond to, even though the same verbs in different languages take different numbers 
of arguments), a second and equally serious problem results. 
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cognitive processes, we have two options. One is to assert that, all other con- 
siderations notwithstanding, the format of mental representations must be 
similar to syntactic structures, in order to make language learning possible. 
Fodor (1976), for example, has put forth this argument.’ The second is to 
posit at least two representational formats, one that is optimally suited for 
perception and cognition, and one that is optimally suited for language learn- 
ing, together with a conversion procedure that transforms a representation 
from the former to the latter format during language learning. Anderson and 
Hamburger et al., already incorporate a version of this hypothesis. In LAS, 
the semantic structures are not entirely suitable for rule learning, so there is 
a procedure that converts them into the “prototype structures”. And in the 
Hamburger et al., model, the deep structures are not entirely suitable as cog- 
nitive representations (being too specific to particular languages), so there is 
a procedure whereby they are derived from “semantic structures”. Ultimately 
the Cognitive Theory of language learning must posit one or more represen- 
tational formats appropriate to cognition in general and to language learning 
in particular, and, if necessary, the procedures that transform one sort of 
representation into the other. 

Nativism and empiricism revisited 
It is often supposed that if children indeed base their rule learning on cog- 
nitive representational structures, the traditional case for nativism has been 
weakened (e.g., Schlesinger, 1971; Sinclair de-Zwart, 1969). According to 
this reasoning, cognitive structures already exist for other purposes, such as 
perception, reasoning, memory, and so forth, so there is no need to claim 
that humans possess an innate set of mental structures specific to language. 
However, this conclusion is at best premature. It is far from obvious that the 
type of representational structures motivated by a theory of perception or 
memory is suitably adaptable to the task of syntactic rule learning. For if 
the foregoing discussion is correct, the requirements of language learning 
dictate that cognitive structures are either language-like themselves, or an in- 
nate procedure transforms them into structures that are language-like. When 
one considers as well the proposed innate constraints tin how these structures 
enter into the rule hypothesization process (i.e., Anderson’s Graph Deforma- 
tion and Semantics-Induced Equivalence Principles, and Hamburger et al.‘s 
Binary and Freezing Principles), one must conclude that the Cognitive Theory 

‘Incidentally, it is ironic that Anderson, in a different context, fails to mention this argument when 
he examines the cast for propositional theories of mental representation in general (Anderson, 1978). 
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of language learning, in its most successful implementations, vindicates 
Chomsky’s innateness hypothesis if it bears on it at all.’ 

Lunguage learning and other forms of lcarnirlg 
It might be conjectured that if one were to build models of other instances 
of human induction (e.g., visual concept learning, observational learning of 
behavior patterns, or scientific induction), one would be forced to propose 
innate constraints identical to those proposed by the designers of language 
learning models. If so, it could be argued that the constraints on language 
learning are necessitated by the requirements of induction in general, and 
not natural language induction in particular. While it is still too early to eva- 
luate this claim, the computer models of other types of induction that have 
appeared thus far do not seem to support it. In each case, the representa- 
tional structures in which data and hypotheses are couched are innately tai- 
lored to the requirements of the particular domain of rules being induced. 
Consider Winston’s (1975) famous program, which was designed to induce 
classes of block-structures, such as arches and tables, upon observing exem- 
plars and non-exemplars of the classes. The units of the program’s proposi- 
tional structures can designate either individual blocks, blocks of triangular 
or rectangular shape, or any block whatsoever; the connecting terms can refer 
to a few spatial relations (e.g., adjacency, support, contact) and a few logical 
relations (e.g., part-whole, subset-superset). The program literally cannot 
conceive of distance, angle, color, number, other shapes, disjunction, or im- 
plication. This removes the danger of the program entertaining hypotheses 
other than the ones the programmer is trying to teach it. Similarly. Soloway 
and Riseman’s (1977) program for inducing the rules of baseball upon observ- 
ing sample plays is fitted with innate knowledge of the kind of rules and 
activities found in competitive,sports in general. Langley’s (1977) program 
for inducing physical laws upon observing the behavior of moving bodies is 
confined to considering assertions about the values of parameters for the 
positions, velocities, and accelerations of bodies, and is deliberately fed only 
those attributes of bodies that are significant in the particular mock universe 
in which it is “placed” for a given run. These restrictions are not just adven- 
titious shortcuts, of course. Induction has been called “scandalous” because 
any finite set of observations supports an intractably large number of gener- 

*One could contest this conclusion by pointing out that it has only been shown that the various 
nativist assumptions are sufficienr for learnability, not that they are necessary. But as Hamburger and 
Wcxler put it (1975), “anyone who thinks the assumption[s are] not necessary is welcome to try to 
devise proofs corresponding to ours without depending on [those] assumptions”. 
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alizations. Constraining the type of generalizations that the inducer is allow- 
ed to consider in a particular task is one way to defuse the scandal. 

Parental Speech to Children 
Frequently it is argued that the special properties of parents’ speech to chil- 
dren learning language reduces the need for innate constraints on the learning 
process (e.g., Snow, 1972). Since these claims have not been accompanied by 
discussions of specific learning mechanisms that benefit from the special 
speech, they seem to be based on the assumption that something in the 
formal properties of the language learning task makes short, simple, gramma- 
tical, redundant sentences optimal for rule learning. However a glance at the 
models considered in the present paper belies this assumption: the different 
models in fact impose very different requirements on their input. 

Consider the effects of interspersing a few ungrammatical strings among 
the sample sentences. Gold’s enumeration learner would fail miserably if a 
malformed string appeared in the sample - it would jettison its correct hypo- 
thesis, never to recover it, and would proceed to change its mind an infinite 
number of times. On the other hand, Horning’s Bayesian learner can easily 
tolerate a noisy sample, because here the sample does not mandate the whole- 
sale acceptance or rejection of grammars, but a selection from among them 
of the one with the highest posterior probability. The Hamburger et al., 
model would also converge despite the occasional incorrect input datum, 
since at any point in the learning process at which it has an incorrect gram- 
mar (e.g., if it were led astray by a bad string), there is a nonzero probability 
that it will hypothesize a correct grammar within a certain number of trials 
(assuming, of course, that it does not encounter another bad string before 
converging). 

Similarly, it is doubtful that the length or complexity of sentences has a 
uniform effect on different models. Feldman described a procedure requir- 
ing that the sample sentences be ordered approximately by increasing length, 
whereas Gold’s procedure is completely indifferent to length. In the Ham- 
burger et al, model, contrary to the intuition of some, learning is facilitated 
by complex sentences - not only will the learner fail to converge if he does 
not receive sentences with at least two levels of embedded sentences, but 
he will converge faster with increasingly complex sentences, since in a com- 
plex sentence there are more opportunities for incorrect transformations or 
the absence of correct transformations to manifest themselves by generating 
the wrong string. Nevertheless, short and simple sentences may indeed faci- 
litate learning in humans, but for a different reason. Since children have 
limited attention and memory spans, they are more likely to retain a short 
string of words for sufficient time to process it than they would a long string 
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of words. Similarly, they are more likely to encode successfully a simple 
conceptualization of an event than a complex one. Thus short, simple sen- 
tences may set the stage for rule hypothesization while playing no role (or a 
detrimental role) in the hypothesization process itself. 

Other models are sensitive to other features of the input. Since Klein and 
Kuppin’s Autoling relies on distributional analysis, it thrives on sets of mini- 
mally-contrasting sentences. Since Anderson’s LAS merges constituents with 
the same semantic counterparts, it progresses with sets of sentences with 
similar or overlapping propositional structures. 

In sum, the utility of various aspects of the input available to a language 
learner depends entirely on the learning procedure he uses. A claim that some 
feature of parental speech facilitates rule learning is completely groundless 
unless its proponent specifies some learning mechanism. 

Conclusions 

In an address called “Word from the Language Acquisition Front”, Roger 
Brown (1977) has cautioned: 

“Developmental psycholinguistics has enjoyed an enormous growth in 
research popularity... which, strange to say, may come to nothing. There 
have been greater research enthusiasms than this in psychology: Clark Hull’s 
principles of behavior, the study of the Authoritarian personality, and, of 
course, Dissonance Theory. And. in all these cases, very little advance in 
knowledge took place. . ..A danger in great research activity which we have 
not yet surmounted, but which we may surmount, is that a large quantity of 
frequently conflicting theory and data can become cognitively ugly and so 
repellent as to be swiftly deserted, its issues unresolved.” 

It is my belief that one way to surmount this danger is to frame issues in 
the context of precise models of the language learning process, following the 
lead of other branches of the cognitive sciences. I hope to have shown in this 
section why it may be necessary to find out how language learning could 
work in order for the developmental data to tell us how it does work. 
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R6sumk 

Analyse d’une recherche centrbe sur I’apprentissage du langage humain, developpant des modeles m6- 
canistes p&is susceptibles, en principe, d’acquerir le Iangage a partir d’une exposition aux don&es 
linguistiques. Une telle recherche comporte des theoremes (emprunt6s a la linguistique mathematique) 
des modeles informatiques pour I’acquisition du langage (empruntt% i la simulation cognitive et i 
l’intelligence artificielle) des modeles d’acquisition de la grammaire transformatiormelle (empruntt% 
a la linguistique thdorique). On soutient que cette recherche repose Btroitement sur les thimes princi- 
paux de la psycholinguistique de d&eloppement et en particulier sur l’opposition nativisme-empirisme, 
sur ‘le role des facteurs semantiques et pragmatiques dans l’apprentissage du langage, sur le d&eloppe- 
ment cognitif et l’importance du discours simplifie que les parents adressent aux enfants. 


