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Being asked to what end he had been born, he replied,
“To study the Sun and Moon and the heavens.”

Diogenes Lagrtius, speaking of Anaxagoras.

Lives and Opinions of Eminent Philosophers 11, 10.

I know that my day’s life is marked for death.
But when I search into the close, revolving spirals of stars,
my feet no longer touch the Earth. Then,
by the side of Zeus himself, I take my share of immortality.

Epigram attributed to Ptolemy.

Palatine Anthology 1X, 577.
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he ancient Western astronomical tradition is one of great richness and

impressive duration. It begins with records of planet observations made
by the Babylonians in the second millennium 8.c. It includes the development
of an astronomy based on geometrical methods and philosophical principles
by the Greeks between the time of Aristotle (fourth century B.c.) and the
time of Prolemy (second century a.p.). After a period of decline, or at least
of quiescence, astronomy underwent a renaissance in the Islamic Middle East
in the ninth century a.p. For the next several centuries the language of
astronomical learning was Arabic, as Greek had been before, and as Akkadian
had been before that. This astronomical tradition culminated with the astro-
nomical revolution of the sixteenth century in central Europe, where Latin
was the language of scientific discourse. This history of nearly 3,000 years
therefore involves contributions by the Babylonian, Greek, Arabic, and medi-
eval Latin cultures. But it was the Greek period that determined the fundamen-
tal character of this endeavor.

This book is called The History and Practice of Ancient Astronomy. In the
largest sense, its subject is the ancient astronomical tradition of the West,
which I take to encompass the period and the cultures named. But the focus
of this book is the Greek period. One cannot really understand what medieval
Arabic and Latin astronomy were about, nor can one understand what Coper-
nicus and Kepler did in the Renaissance, without understanding Prolemy.

Of course, Greek astronomy did not develop in a vacuum. Indeed, in
our century scholars have come to appreciate how important an influence
Babylonian astronomical practice exerted on the Greeks of the Hellenistic
and Roman periods. Babylonian astronomy is a complex subject, intellectually
and historically rich, and fully worthy of study in its own right. I have not
been able to devote space to Babylonian astronomy that would be commensu-
rate with its intrinsic significance. However, I have tried to include enough
to give the reader an insight into the essential character of Babylonian astron-
omy, its historical development, and the nature of its influence on the Greeks.

In the same way, I have not attempted to write a history of medieval Arabic
astronomy or of medieval or Renaissance European astronomy. Each of these
subjects, if treated in adequate detail, would require a book of its own.
However, I have often illustrated the continuity of the Western astronomical
tradition by showing what becomes of some aspect of Greek astronomy (e.g.,
astronomical tables) in the Middle Ages. Some subjects, such as the astrolabe,
that show a rich development in the Middle Ages are treated in considerable
derail. And, of course, no treatment of Greek planetary theory could be
considered adequate if it omitted a discussion of its radical transformation by
Copernicus in the sixteenth century.

In calling this book History and Practice 1 pledged to stay as close and as
true as possible to both. Staying close to history means bringing the reader
into direct contact with the ancient sources. I have tried always to tell not
only what but also how we know about the astronomy of the ancient past.
Throughout the book, many extracts from ancient writers are reproduced, to
allow the reader to form his or her own impression of the ancient astronomical
discourse. While scholars can agree about the main outlines of the history of
Western astronomy, opinion is often divided on details, and occasionally even
on issues of major importance. Where the evidence is conflicting, I have not
tried to hide our ignorance but have presented the case as I see it.

The material culture of ancient astronomy is an important part of its
history. The instruments used by the ancient astronomers are a part of the
story, no less than the texts they wrote and studied. Many illustrations are
reproduced here to provide a visual impression of the nature of the evidence
on which our reconstruction of the past must be based.

In our time, knowledge is fragmented into hundreds of specialities and
subspecialities. No one science occupies a central place. But in ancient Greece
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PREFACE

and medieval Islam, as well as in medieval Europe, astronomy held a privileged
place, with important connections to philosophy and religion, as well as to
art and literature. For the ancient Pythagoreans, astronomy was one of the four
chief branches of mathematics, along with arithmetic (i.e., number theory),
geometry, and music theory. In the medieval universities these same four
arts became the quadrivium—the upper-level sequence of courses in the arts
curriculum. Thus, an introduction to astronomy remained a central part of
the experience deemed essential for an adequate education. A complete history
of the astronomical tradition certainly cannot leave out of account the relation
of astronomy to the broader culture.

Staying close to the practice of astronomy means explaining a subject in
enough detail for the reader to understand what the ancient astronomers
actually did. Nearly every subject that is treated in this book is treated in
enough detail to permit the reader to practice the art of astronomy as it was
practiced in antiquity. After working through chapter 3, the reader should be
able to make a sundial by methods approximating those used by Greek and
Roman astronomers. After working through chapter 7, the reader should be
able to predict the next retrogradation of Jupiter, either by the methods of
the Babylonian scribes or by the methods of Ptolemy.

The decision to focus on astronomical practice entailed a number of com-
promises. For example, topics that seemed too complex to be treated in
adequate detail without extravagant demands for space and on the reader’s
patience have been omitted. The best example of such an omission is the
ancient lunar theory. Thus, while both the Babylonian and Greek planetary
theories are discussed in detail, I have chosen to let the Moon go. But [ am
confident that the reader who has mastered Ptolemy’s theories of the Sun and
of Mars in this book will have no trouble with the lunar theory if he or she
should pursue it elsewhere.

In focusing on practice, the question naturally arises of what astronomical
knowledge the reader can be assumed already to possess. I have not assumed
that the reader knows any astronomy. The basic astronomical facts required
for understanding the ancient texts are developed as the book progresses.

But perhaps the most serious choice to be made in writing a book about
astronomical practice is the selection of the appropriate level of mathematics.
For, in both Greece and Babylonia, astronomy was already a thoroughly
mathematical subject. My goal has been to treat the astronomical concepts
rigorously and accurately, but to minimize the mathematical tedium as much
as possible. This is done by several different methods.

First, I have followed the ancient and medieval practice of emphasizing
astronomical tables. Already in Prolemy’s day handy tables were produced to
make astronomy more user-friendly. These tables (for problems associated
with the daily revolution of the celestial sphere and for the more complex
motions of the planets) in fact served to define the practice of astronomy.
Wherever in the medieval world there were tables, real astronomy was prac-
ticed; where tables were lacking there were only dilettantes and dabblers. So
the reader of this book will learn to use tables. And thus the reader will be
prepared for any further study of Greek, Arabic, or medieval or Renaissance
Latin astronomy.

A second way I have found of minimizing the mathematical labor is to
rely on graphical methods and on models (such as the astrolabe) whenever
possible. So, for example, the reader can construct a sundial purely by graphical
methods, without any computation at all. The reader can predict the position
of Mars according to Ptolemy’s theory by manipulating an instrument (the
Ptolemaic slats) rather than by performing a tedious trigonometrical calcula-
tion. Some of the necessary models can be assembled from the patterns found

in the appendix to this book.



When a more detailed mathematical treatment of some topic seems desit-
able, T usually place it in a special section or separate it off in a Mathematical
Postscript, after a less mathematical treatment. This will allow readers who are
on friendly terms with trigonometry to pursue a subject in more detail, without
subjecting other readers to unnecessary abuse. Those who wish to skip the
mathematical postscripts can do so without fear that they are missing concepts
essential to later developments.

In the sciences, it is common to encounter monographs in which the
author interrupts the development from time to time by posing problems and
exercises for the reader. This is the author’s way of saying, You can’t be sure
you understand this marerial unless you can use it. But the exercises and
suggestions for observations that are interspersed throughout this book are
unusual features for a historical work. These are meant to give the reader the
chance to practice the art of the ancient astronomer. Any attempt at a grand
historical synthesis or a philosophical analysis of the Greek view of nature
that is not underpinned with a sound understanding of how Greek astronomy
actually worked is headed for trouble. I hope that the artention to detail and
the provision of exercises will also make the book useful for teaching. But
every reader of the book—the general reader, the classicist who wants to know
more about Greek planetary theory, the astronomer who wants to understand
the early history of his or her field—is urged to work as many of the exercises
as possible. There is all the difference in the world between knowing abour
and krowing how to do.

In translations from ancient writers, pointed brackets < > enclose conjec-
tural restorations to the text. Square brackets [ ] enclose words added for
the sake of clarity but that have no counterparts in the original text. When
the translator is not identified, the translation is my own.
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I.I ASTRONOMY AROUND 700 B.C.:
TEXTS FROM TWO CULTURES

Astronomy among the Grecks of the Archaic Age
The oldest surviving works of Greek literature are the /liad and Odyssey of

Homer, which were put into written form probably around the end of the
eighth century B.c. Only a little younger is Hesiod’s Works and Days, which
dates from about 650 B.c. When Homer and Hesiod were writing, the Greeks
were just emerging from their dark age. Literacy had been gained, then lost
in the convulsions of the twelfth century B.c., then regained. Historians turn
to Homer and Hesiod for insight into the Greek societies about 700 B.c.—for
insight into the Greeks' economic life, their social organization, and their
religious practices. We can profitably inquire of Homer and Hesiod just what
the Greeks knew of astronomy.

Homer In the eighteenth book of the I/iad, Hephaistos makes a shield for
Achilles and decorates it with images of the heaven and the Earth:

First of all be forged a shield that was huge and heavy. . . .

He made the Earth upon it, and the sky, and the sea’s water,

and the tiveless Sun, and the Moon waxing into her fullness,

and on it all the constellations that festoon the heavens,

the Pleiades and the Hyades and the strength of Orion

and the Bear, whom men also give the name of the Wagon,

who turns about in a fixed place and looks at Orion

and she alone is never plunged in the wash of Ocean. . . .

He made on it the great strength of the Ocean River

which ran around the uttermost vim of the shield’s strong structure.”

Here, then, are a few stars and constellations mentioned by name: the Pleiades,
the Hyades, Orion, and the Bear, which is also pictured as a Wagon. (The
Bear or Wagon is our Ursa Major. The seven brightest stars of this constellation
form the Big Dipper.) Elsewhere, Homer mentions the Dog Star and the
constellation Bodtes.” All these stars have therefore been called by the same
names for nearly 3,000 years. In the passage above, Homer mentions that the
Bear “turns about in a fixed place” and “is never plunged in the wash of Ocean.”
This is a reference to the fact that the Bear is a circumpolar constellation: it
can be seen all night long turning about the celestial pole and never rises or
sets. Homer also knows that sailors can steer by the Bear: Odysseus keeps the
Bear on his left in order to sail to the east.’

How are we to imagine the place of the Earth? Homer nowhere makes a
clear statement about the shape of the Earth, but he seems to picture it as
flat, like a shield. As is clear from the passage above, the land makes a single
island, surrounded by Ocean. Homer probably imagined the sky, or heaven,
as solid, for in several passages he likened it to iron or bronze.*

Homer knows that different stars are conspicuous at different times of
year. Diomedes’ blazing armor is compared to the Dog Star (Sirius),

that star of the waning summer who beyond all stars
rises bathed in the Ocean stream to glitter in brilliance’

Sirius is the brightest star in the sky. In Homer’s time and place, Sirius made
its morning rising in the summer. Then Sirius could be seen rising in the east
just before sunrise. At this morning rising, Sirius reemerged from a period of
invisibility of over two months. (Sirius was invisible when the Sun was too
near it in the sky.) So here we have a reference to telling the time of year by
the stars—a very important tradition in Greek culture.

3
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4 THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

A few of the stars exercise influences over men and women. Most striking
is the case of Sirius. In the lliad, Achilles, moving over the battlefield in his
blazing armor, is compared to Sirius,

the star they give the name of Orion’s Dog, which is brightest
among the stars, and yet is wrought as a sign of evil
and brings on the great fever for unfortunate mortals.’

The morning rising of Sirius was associated with the summer heat. But there
is no hint of an elaborate system of personal astrological forecasts. That was
a development of the Hellenistic period, five or six centuries later, when the
Greeks had become more “scientific.”

The evening star and morning star are mentioned in several passages.7 But
Homer apparently did not know that these are one and the same, our planet
Venus.

Hesiod’s Works and Days In Hesiod’s poem, Works and Days, written a
generation or two after Homer’s time, we see a more systemaric effort to
connect astronomy with the lives of men and women. The central part of the
poem is an agricultural calendar, which prescribes the work to be done at
each season of the year. The farmer is to tell the time of year by the heliacal
risings and settings of the stars (also called star phases). These are risings and
settings of the stars that occur just before the Sun rises or just after the Sun
sets. The calendar of works and days begins with the two famous lines:

When the Pleiades, daughters of Atlas are rising,
begin the harvest, the plowing when they set.”

The Pleiades made their morning rising in May. Then they could be seen,
rising in the east just before sunrise. This was the time to harvest the wheat.
The Pleiades made their morning setting (going down in the west just before
the Sun came up in the east) in late fall. For Hesiod, this was the sign to
plow the land and sow the grain. Fall is the time for planting what today is
called winter wheat, the only kind grown in antiquity.

Hesiod’s agricultural year begins in the fall with the morning setting of
the Pleiades and the sowing of the grain. Hesiod warns that if the farmer puts
off his sowing until the “turning of the Sun” (i.e., the winter solstice), he will
reap sitting and gain but a thin harvest.”

Hesiod refers to the equinox as the time when “the days and nights are
equal, and the Earth, the mother of all, bears her various fruits.” This reference
to the equinox is followed immediately by two other signs of spring—the
evening rising of Arcturus and the return of the swallow:

When Zeus has finished sixty wintry days

after the turning of the Sun, then the star

Arcturus leaves the holy stream of Ocean

and first rises brilliant in the twilight.

Afier him Pandion’s twittering daughter, the swallow,
comes into the sight of men when spring is just beginning."

Hesiod’s statement that the evening rising of Arcturus comes sixty days after
the winter solstice gives a way of checking the era in which he lived. (See sec.
4.9 for the method of making such a dating.) Hesiod’s statement is consistent
with the date we have assumed for him, about 650 B.C.

Spring is also the time when the one who carries his house on his back
(the snail) climbs up the plants “to flee the Pleiades.”" This is a reference to
the morning rising of the Pleiades, which, as mentioned above, signaled the
time of the grain harvest.



When the harvest is over, Sirius makes its morning rising and the hottest
time of the summer arrives. This is the season when the artichoke blooms
and the cicada chirps, when goats are fattest and wine sweetest, when women
are most full of lust but men are feeblest, because “Sirius parches head and
knees, and the skin is dry from heat.”" Here is another instance of the belief
in the influences exerted by Sirius at its morning rising, The time for picking
grapes arrives

When Orion and Sirius come into mid-sky,

and rosy-fingered Dawn looks upon Arcturus . . . 7

The time is September, when Orion and Sirius are high in the sky at morning
and Arcturus makes its morning rising.

The agricultural year ends as it began, with the morning setting of the
Pleiades:

When the Pleiades and Hyades and strong Orion set,
remember it is seasonable for sowing.
And 5o the completed year passes beneath the earth'!

This completes the agricultural calendar in the Works and Days. A few
other astronomical references are found in the following section of the poem,
which treats sailing. The morning setting of the Pleiades and Orion around
the end of October signals a stormy season and the end of good sailing. The
best time for sailing is the fifty days following the summer solstice.

The poem ends with a list of lucky and unlucky days of the month. In
his reckoning of days, Hesiod seems to assume a month of thirty days, divided
into three parts of ten days each—the waxing, the midmonth, and the waning,
which correspond to the phases of the Moon. A day is usually (though not
always) indicated by specifying its place in one of these three decades. So, for
example, the eighth and the ninth day of the waxing month are good for the
works of man. The sixth of the midmonth (i.e., the sixteenth day of the
month) is unfavorable for plants, good for the birth of males, and unfavorable
for a girl to be born or married. These lucky and unlucky days are not taken
up in any obvious order, nor is there any explanation of why one day should
be good or bad for any particular job. There also is no distinction among
months or years—the thirteenth of the month always is bad for sowing but
good for setting plants.

Early Astronomy in Babylonia

In Babylonian astronomy of about 700 B.C. we can recognize many features
that remind us of Greek astronomy of the same period. However, in many ways
Babylonian astronomy was further advanced. We can form a fair impression of
the state of Babylonian astronomy around 700 B.c. by looking in detail at
tWo texts.

MULAPIN MUL.APIN is the title of a Babylonian astronomical text that
survives in a number of copies on clay tablets. The name of this work is taken
from the opening words of the text: “Plow Star.” The oldest extant copies
date from the seventh century B.c., but the text is a compilation from several
different sources, which may have been substantially older. The text continued
to be copied down to Hellenistic times. That it was considered a standard
compilation is apparent from the fact that the surviving copies differ very
little from one another. In figure 1.1, we see a fragment of MUL.APIN now
in the British Museum.
MUL.APIN begins with a list of stars and constellations:

THE BIRTH OF ASTRONOMY
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FIGURE LI. A fragment of a tablet
bearing part of the text of MUL.APIN. By
permission of the Trustees of the British

Museum (BM 42277 Obv.).

NCIENT ASTRONOMY

The Plow, Enlil, who goes at the front of the stars of Enlil.
The Wolf, the seeder of the Plow.

The Old Man, Enmesarra.

The Crook, Gamlum.

The Great Twins, Lugalgirra and Meslamraea. . . .

15

(8 represents the sound of English sh.) The star list is immediately followed
by a list of the dates of the heliacal risings of various constellations, which
begins thus:

On the 1st of Nisannu the Hired Man becomes visible.

On the 20th of Nisannu the Crook becomes visible.

On the 1st of Ajjaru the Stars become visible.

On the 20th of Ajjaru the Jaw of the Bull becomes visible.

On the 10th of Simanu the True Shepard of Anu and the Grear Twins

become visible.'

This is a star calendar, or what the Greeks called a parapegma. It enables the
user to determine the time of year by noting the heliacal risings and settings
of the stars. On the first day of the month of Nisannu, the Hired Man (our
Aries) makes its morning rising and thus “becomes visible.” The Hired Man
would be seen rising in the east just before dawn. It marks the first reappearance
of the constellation after a period of invisibility of a month or more. On the
first of Ajjaru, “the Stars” (our Pleiades) make their morning rising. The
calendar in MUL.APIN is reminiscent of the agricultural calendar in Hesiod’s
Works and Days, but it is far more complete and systematic.

The parapegma is followed by a list of stars and constellations that have
simultaneous risings and settings:

The Stars rise and the Scorpion sets.

The Scorpion rises and the Stars set.

The Bull of Heaven rises and SU.PA sets.

The True Shepard of Anu rises and Pabilsag sets. . .. "

7

The opening lines of this section of MUL.APIN inform us that when the
Pleiades are seen rising in the east, the Scorpion will be seen setring in the
west (and vice versa). Why would anyone need to know this? The list of
simultaneous risings and settings is undoubtedly connected with the para-
pegma. Using the parapegma, one tells the time of year by noting which
constellation is rising in the east just ahead of the Sun. But suppose thar the
eastern horizon is obscured by clouds. Then one could look to see which
constellation is setting in the west just before sunrise. From the list of simulta-
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neous risings and settings, one could then infer which constellation was rising.
It is interesting that a similar list of simultaneous risings and settings is given
explicitly for this purpose by the Greek poet Aratus in his Phenomena (third
century B.C.).

The next section of MUL.APIN supplements the parapegma by giving the
time intervals between the morning risings of selected constellations:

55 days pass from the rising of the Arrow to the rising of the star of
Eridu.

60 days pass from the rising of the Arrow to the rising of SU.PA.

10 days pass from the rising of SU.PA to the rising of the Furrow.

20 days pass from the rising of the Furrow to the rising of the Scales.

30 days pass from the rising of the Scales to the rising of the She-
goat. ...

We also find lists of this sort in later Greek papyri—for example, the so-called
art of Eudoxus papyrus of about 190 B.c.”

The Babylonians, like most early Mediterranean cultures, used a luni-solar
calendar. The month began with the new Moon. That is, a new month began
when the crescent Moon could be seen for the first time in the west just
before sunset. The year usually contained twelve months. But because twelve
lunar months only amount to 354 days, a year of twelve months will steadily
get out of step with the Sun and the seasons. (The solar year is about 365
days long.) Thus, the Babylonians, like the Greeks, inserted (or inzercalated)
a thirteenth month in the year from time to time.

The months mentioned in the parapegma of MUL.APIN are therefore not
months of an actual calendar year, but rather the months of a sort of average
or standard year. The Hired Man does not always make his morning rising
on the first of Nisannu. Nisannu was traditionally the spring month. Whenever
the Nisannu got too far out of step with the seasons (or with the morning
risings of the fixed stars), a thirteenth month was intercalated into the calendar
year to bring things back into alignment. Consequently, although the Hired
Man always made his morning rising around the first of Nisannu, the date
could actually slosh back and forth by up to a month. The list of time intervals
between the risings of key stars was therefore in some ways more useful than
the artificial star calendar, for the former was not tied to particular month
names.

In the early period, the need for intercalating a thirteenth month was
established without the aid of any theory, simply by observation. And the
observations might not even be astronomical in nature. As we have seen,
Hesiod uses signs taken from animals along with the astronomical signs: the
return of the swallow and the first appearance of snails are used in combination
with the heliacal risings and settings of the stars. It is noteworthy that two
sections of MUL.APIN set out rules for determining whether a thirteenth
month should be intercalated. For example, two of the many rules state that
a leap month should be inserted to keep the morning rising of the Stars (our
Pleiades) at the right time of year:

<If> the Stars become visible <on the 1st of Ajjaru>, this year is
normal.

<If> the Stars become visible on the 1st of <Simanu>, this year is a leap
year.”!

Within a few centuries, the hodgepodge of rules governing the luni-solar
calendar was regularized into a real system, based on a nineteen-year cycle.
By contrast, the Greeks never did a institute a regular scheme of intercalation.
One reason that the Babylonians eventually succeeded in regularizing their
calendar, while the Greeks failed, is that the astronomer had a more important
place in Babylonian civilization. The astronomers of Babylonia were civil



8 THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

servants who worked at religious temples, for example, at the great temple
Esangila in Babylon itself. Thus, the practice of astronomy had a political
and religious significance in Babylonian civilization that it did not have in
the Greek world.

A good example of the political and religious significance of Babylonian
astronomy is provided by the list of omens in MUL.APIN. Omens were taken
both from the fixed stars and from the planets. Here are a few examples:

If the stars of the Lion . . ., the king will be victorious wherever he
goes.

If Jupiter is bright, rain and flood.

If the Yoke is dim when it comes out, the late flood will come.

If the Yoke keeps flaring up like fire when it comes out, the crop will
prosper.

The Yoke appears here to be another name for Jupiter. There also exist portions
of a vast compendium of omens, called Enuma Anu Enlil. This collection was
considerably older than MUL.APIN. Its omens were frequentdy quoted and
interpreted in later texts. From a surviving table of contents, it appears that
Enuma Anu Enlil filled some seventy tablets, with thousands of individual
omens. The temple astrologers would sometimes send reports to the king,
citing an observation recently made together with the relevant interpretation
quoted from the standard omen list in Enuma Anu Enlil. Some of the omens
in MUL.APIN were drawn from those in Enuma Anu Enlil. As a rule, ancient
Babylonian omens apply to the nation, or to the king, not to ordinary individ-
uals.

Other sections of MUL.APIN contain information about the change in
the length of the day between the solstices and the equinoxes, and the variation
in the length of shadows in the course of the day. The numbers set down are
not real observations, but represent idealized arithmetical patterns—though
these must, of course, have been ultimately based on observation. Finally, the
beginnings of a theory of the planets can be perceived in MUL.APIN. A
portion of the text gives numerical values for the periods of visibility and
invisibility of the planets. Although the numbers set down are crude and
inconsistent, they do represent a beginning to the scientific study of the
planets—the most difficult branch of ancient astronomy—which was to reach
a highly succesful conclusion several centuries later.

A Circular Astrolabe

The Babylonians visualized the night sky as divided into three belts. These
were named after three divinities and called the way of Ea, the way of Anu,
and the way of Enlil. The stars of Anu were situated in a broad belr that
straddled the celestial equator. The stars of Anu thus rose more or less in the
east and set more or less in the west. The stars of Ea were located south of
the belt of Anu. The stars of Ea thus rose well south of east and set well south
of west. The stars of Enlil, located to the north of the belt of Anu, rose north
of east and set north of west. Included among the stars of Enlil were the
northern circumpolar stars, which do not rise or set.

In the first quotation from MUL.APIN, cited earlier, we read that the
Plow Star “goes at the front of the stars of Enlil.” The other stars in the same
passage arc all stars in the belt of Enlil. The text of MUL.APIN mentions
some thirty-two stars (or star groups) of Enlil. Added to the stars of Enlil is
the planet Jupiter (called the star of Marduk, who was the chief god of
Babylon), even though the text explicitly states that the star of Marduk does
not stay put but keeps changing its position. The next part of the constellation
list is devoted to nineteen stars of Anu. Associated with the stars of Anu are



the planets Venus, Mars, Saturn, and Mercury. The constellation list concludes
with fifteen stars (or star groups) of Ea.

Other Babylonian texts give shorter lists of thirty-six star groups only. The
organizing principle is that there should be one star group from each of the
three belts, for each of the twelve months of the year. The lists give one star
from each of the three belts that made its morning rising in the month of
Nisannu, one from each of the three that made its morning rising in the
month of Ajjaru, and so on. In the earliest such texts (from about 1100 B.C.),
the three groups of twelve stars are simply written in parallel columns.”

But there also exist fragments of a list arranged in a circular pattern (see
Fig. 1.2). This is usually called a circular astrolabe. However, this name is not
especially apt, for the word astrolabe is also used for two kinds of astronomical
instruments that were developed in late antiquity and the Middle Ages. Circular
star list therefore might be more suitable. The fragment in figure 1.2 dates
from the reign of Ashurbanipal, which would place it around 650 B.c.—roughly
contemporary with the oldest surving texts of MUL.APIN. A modern recon-
struction, based on the more complete information taken from the rectangular
star lists, is shown in figure 1.3.

The pie wedges represent months of the year. Wedge I in figure 1.3 is for
Nisannu, the spring month. The three circular belts are the ways of Ea
(southern stars, outer ring), Anu (equatorial stars, middle ring), and Enlil
(northern stars, inner ring). The Plow Star, MUL.APIN, appears in the belt
of Enlil, in wedge I, indicating that the Plow makes its morning rising in the
month of Nisannu. The Pleiades (MUL.MUL, “the Stars,” in the belt of Ea)
make their morning rising in the month of Ajjaru, as we saw in the second
extract from MUL.APIN cited earlier. But here we have an apparent problem
with the Babylonian astrolabes—the Pleiades are near the celestial equator and
ought rather to be placed in the way of Anu, as indeed the text of MUL.APIN
confirms. This is one of many small ways in which the star list of MUL.APIN
represents an improvement on the astrolabes, which probably derive from
older material. The presence of planets in the circular astrolabe is also puzzling,
for the planets cannot be used for telling the time of year, since they move
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FIGURE L2. A fragment
of a circular star list
(sometimes called a circular
astrolabe). From van der
Waerden (1974).

9



I0 THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

4

FIGURE 1.3. A reconstruction
of a circular astrolabe.
From Schott (1934).

around the zodiac and do not make their morning risings at the same time
every year. The planet names perhaps designate some sort of “home positions”
of the planets among the stars.

The Babylonian division of the night sky into the ways of Ea, Anu, and
Enlil and the selection of thirty-six stars to mark the months of the year are
much older than the oldest surviving astrolabes. Indeed, this organization of
the sky is explicitly mentioned in the text of Enuma Elish, the Babylonian
creation epic. (The standard title is the translation of the opening words of
the text: “When above.”) This long poem, which reached its definitive form
by 1500 B.C., describes the births of the gods, the ascent to supremacy of
Marduk, and Marduk’s creation of the the world.™ At one stage in the
construction of the universe by Marduk, we read

He [Marduk] fashioned stands for the great gods.

As for the stars, he set up constellations corresponding to them.
He designated the year and marked out its divisions,
Apportioned three stars each to the twelve months.”

This is a clear reference to the 3 X 12 arrangement of the Babylonian astrolabes.

Each wedge in the circular astrolabe of figure 1.3 contains a number. These
indicate the length of a watch. The day was divided into three watches, which
were regulated by means of water clocks. The night was similarly divided into
three watches. In the summer, the day watches were long and the night



watches were short. In the winter, the reverse was true. The longest day watch
occurs in wedge III (month of Simanu), which would be around summer
solstice. The 4 in the outer segment of wedge III indicates that one should
put 4 minas of water into the water clock. When this water has flowed out,
a day watch is over. (The mina was a unit of weight.) The shortest day is
around the winter solstice (wedge IX), when the day watch lasts for the amount
of time required for 2 minas of water to flow from the water clock. Similar
information is found in MUL.APIN.

The Babylonians further divided each of the three watches into four parts,
which resulted in a twelve-part division of the day. The Greeks learned this
twelve-part division from the Babylonians, as the Greek historian Herodotus
remarked.” The numbers written in the inner two circles represent the lengths
of half-watches and quarter-watches, respectively. Thus, in wedge III, 2 and
I are one-half and one-quarter of 4. But what about the numbers in wedge
I1? There the sequence reads 3 40 (a day watch), 1 so (half a day watch), s
(a quarter watch). The numbers are written in sexagesimal notation, that is,
in base-60, after standard Babylonian practice. Thus,

40 50
340 means 3 ., 15O meansI ., et

I 50/60 is half of 3 40/60. And 55/60 is half of 1 50/60. Our own sixty-part
divisions of the units of time and of angle derive from ancient Babylonian
practice.

Let us examine the sequence of the lengths of the day watches as we go
from summer to winter solstice:

Month Watch Change

111 4

020
v 3 40

020
A\ 320

020
VI 3

020
VII 2 40

020
VIII 220

020
IX 2

The length of the day watch decreases by steady increments of 20/60 of a
mina from one month to the next. This is an example of an arithmetic
progression. It is a characteristic feature of Babylonian mathematical astronomy.
Clearly, this uniform progression is not a result of direct measurement, for
the actual changes in the length of the day are smaller around the solstices
and larger around the equinoxes. Rather, it represents an attempt by the
Babylonian astronomers to impose an arithmetical pattern on a natural phe-
nomenon. The application of mathematics to astronomy had already begun.

I.2 OUTLINE OF THE WESTERN
ASTRONOMICAL TRADITION

By about 700 B.C. astronomy was well under way in both Greece and Mesopo-
tamia. The texts examined in section 1.1 reveal many features in common
between Greek and Babylonian astronomy. Nevertheless, these two cultures
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approached the subject from different perspectives and the science developed
quite differently in the two regions.

Babylonian Astronomy

Early in the second millennium B.c., southern Mesopotamia was unified under
the rule of Hammurapi, a king of Babylon. Marduk, the national god of
Babylon, displaced competing deities and became the chief god of the Mesopo-
tamian pantheon. The city of Babylon, at one time a minor city indistinguish-
able from many others, rose to become the intellectual and cultural center of
the ancient Middle East. Babylonia expanded and contracted with the tides
of fortune. But, apart from exceptional brief periods of military adventure,
the kingdom never controlled much territory beyond the valleys of the Tigris
and Euphrates. Moreover, Babylonia was repeatedly subject to conquest and
occupation by foreign powers. Nevertheless, through most of the ancient
period, Babylon retained a reputation for splendor, cultural brilliance, and
arcane knowledge.

Cuneiform Writing The Babylonians, who spoke a Semitic language called
Akkadian, adopted the cuneiform (wedge-shaped) writing of the older civiliza-
tion of their southern neighbors, the Sumerians. This style of writing was
well suited to its customary medium, the clay tablet. It is easier to press an
indentation into clay than to scratch it neatly. A stylus was pressed into the
clay to make wedge-shaped marks. Combinations of these cuneiform marks
made up the signs for words and syllables (figs. 1.1 and 1.2).

The Babylonians used Sumerian word-signs for phonetic units. Thus, an
Akkadian word was broken into individual syllables, and each syllable was
represented by a Sumerian sign for that syllable’s sound; that is, the Sumerian
signs served as phonograms. However, a large number of old Sumerian words
were retained as ideograms, that is, signs that represent a meaning, rather than
a sound. -

The Babylonians used Sumerian word-signs in both ways when putting
their spoken language into writing. For example, the Akkadian word for the
constellation Libra is zibanitu, which means “scales” or “balance.” The Sumer-
ian word for a balance is RIN. A Babylonian astronomer, writing in Akkadian,
could write the name of the constellation Libra in two ways. He could break
the word into syllables and represent it phonetically by four cuneiform signs:
zi-ba-ni-tum. Or he could write a single cuneiform sign: RIN. In reading
aloud, he might pronounce this sign either as “rin” or as “zibanitu.””

The situation is very complicated, for the same sign might have multiple
phonetic values as a phonogram, as well as multiple meanings as an ideogram.
Consider, for example, the sign »7. In Sumerian, this represented the name
of the the sky god, AN. But this sign also meant “god” in general. A third
meaning was “sky.” In Akkadian, the same sign was taken over for writing
the name of the Babylonian sky god, Anu. It was also adopted as an ideogram
for “god” in general, in which case it represented the Akkadian word #/x. Not
surprisingly, it also served as an ideogram for sky, Akkadian $ami. Thus, as
an ideogram, the sign had at least three different meanings. But the same sign
also served as a phonogram for writing syllables of other Akkadian words, in
which case it represented the sound an—the original Sumerian phonetic value
of this sign. To make matters worse, the same sign also acquired the phonetic
value #/, from the Akkadian.”

In transliterating Babylonian texts, it is customary to distinguish Akkadian
words from Sumerian words and ideograms by writing the Akkadian words
in italics and the Sumerian words in Roman type. Thus, in section LI, we
encountered MUL.APIN, the “Plow Star.” Actually, the sign MUL for “star”
was probably not always pronounced—it served to alert the reader to the fact



that the plow intended was a star and not an ordinary plow. In modern
practice, the word MUL in front of star names is sometimes omitted, and
sometimes it is written in superscript: "APIN,

In the last three centuries 8.c., cuneiform writing became increasingly rare as
it was displaced by Aramaic. But cuneiform continued to serve as a specialized,
scholarly script for technical astronomy. Indeed, the last known cuneiform
texts, from the first century A.D., are astronomical.

Numbers In writing numbers, the Babylonians used a base-6o, place-value
notation. Two kinds of strokes were used, vertical and slanting. Thus, groups
of from one to nine vertical strokes were used for the numbers 1 through 9:

T I m id Jid i v OF W
1 2 3 4 5 6 7 8 9

For 10 through 5o, groups of from one to five slanting wedges were used:

< « K <« €
10 20 30 40 50

Any number between 1 and 59 could be represented by combinations of these
marks. For example,

<H €
16 42

The pattern starts over at 60. That is, the single vertical stroke can represent
either 1, or 60, or 3,600 (= 60°), depending on the place it holds. The lower-
valued places are on the right. (This is analogous to our own practice: in the
expression 111, the first 1 on the right represents a single unit, the second 1
represents 10 units, and the third 1 represents 10" units.) There is some
ambiguity in the writing of cuneiform numerals. Thus,

«F <F

can mean
24 X 60 + 18 = 1,458,
or
24 X 60° + 18 X 60 = 87,480,
or even

4, 8 _,
60 3600 405,

since fractions in base-60 were written in the same notation. The scribe would
usually be able to tell the proper meaning from context.
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In modern practice, the custom is to separate sexagesimal (base-60) places
by commas, but to mark off the fractional part of the number by means of
a semicolon. Thus,

24 36
24,36 =5+ —— + =53.
5524,3 5T %o 3,600 5-41

but

6
5,24;36 = § X 60 + 24 + %5 = 324.6

The reader should now be able to make out the numerals for 2; 20 and 1; 10
in figure r.2.

Major Periods of Babylonian History and Astronomy Mesopotamian civiliza-
tion exhibits a great deal of continuity, even though the political situation
changed through a series of military conquests. We cannot enter into a detailed
history of Babylonian civilization, but it will be helpful to sketch the major
periods (refer to fig. 1.4).” Many dates in the eatly part of figure 1.4 are quite
uncertain.

Hammurapi’s reign and the unification of southern Mesopotamia into one
kingdom fall in what is called the Old Babylonian period. Epic poems describ-
ing Marduk’s creation of the universe probably date from this time. As we saw
in section LI, one of these poems, Enuma Elish, contains some astronomical
material—references to the phases of the Moon and to the thirty-six stars used
to tell the time of year.

We also have a set of observations of the planet Venus—the so-called Venus
tablets of Ammi-saduqa, in whose reign the observations were made (though
the copies that have come down to us were written much later). The tablets
list the first and last visible risings and settings of Venus over a period of
about 21 years. Although some sections of the text appear to list genuine
observations, other sections contain idealized risings and settings based on a
simple, but rather faulty, scheme. Thus, in the oldest significant astronomical
text that we possess, both observation and some sort of theory (even if it is
a crude one) are already present. Interestingly, even the apparently genuine
observations are listed in omen form: “If on the 28th of Arahsamna Venus
disappeared [in the west], remaining absent in the sky 3 days, and on the 1st
of Kislev Venus appeared [in the east], hunger for grain and straw will be in
the land; desolation will be wrought.”30 The omen form allowed the scribes
to predict the status of the grain and straw supply the next time Venus went
through the same pattern. While the observations in the Venus tablets are
not especially remarkable, they are significant in two ways. First, they provide
some help dating the reign of Ammi-saduga, and thus in establishing the
chronology of the Old Babylonian period. Second, they point out a real
difference between Greek and Mesopotamian civilization. There is nothing
comparable to the Venus tablets in the Greek tradition. Early Babylonian
observations are not especially precise. (The remarkable accuracy of the Babylo-
nian observers is a silly fiction that one still frequently encounters in popular
writing about early astronomy.) The important thing is that there was a
tradition of actually making observations and of recording them carefully and
a social mechanism for preserving the records. A good deal of headway can
be made with an extensive series of observations, even if the individual observa-
tions are not terribly accurate.

Part of the motivation for making the observations was religious. And part
of it was practical: the stars and especially the planets were believed to provide
signs of the future welfare of the king and the nation. During the long period



DATE ASTRONOMY

0Old Babylonian Period
1700 BC
Enuma Elish

1600 Venus observations

GENERAL HISTORY

Reign of Hammurapi

Kassite Dynasty
1500

1400
Enuma Anu Enlil
1300

1200

Six Dynasties
1100 Oldest rectangular astrolabe

1000
900

800
Eclipse records

Reign of Nabonassar

700 Assyrian Rule
MUL.APIN

Reign of Ashurbanipal

600 Chaldaean Dynasty  Oldest astronomical diaries

Persian Rule

500 Equal-sign zodiac
Regularization of calendar

400

Alexander takes Babylon

Seleucid Dynasty
300 Planetary theory

200 BC

100 Parthian Rule

from about 1570 to about 1155 B.C., Babylonia was ruled by the kings of the
Kassite dynasty. The huge compilation of omens called Enuma Anu Enlil
probably dates from the Kassite period. The Venus tablets of Ammi-saduqa
were incorporated into this series.

From the middle of the twelfth century to the middle of the eighth century
B.C., Babylonia was ruled by a series of unremarkable dynasties. The oldest
surviving rectangular “astrolabes” (the 36-star lists discussed in sec. 1.1) date
from this period. Near the end of this period, the scribes began to keep
careful records of eclipses. One text, portions of which survive, reported the
circumstances of successive lunar eclipses, at least for the years 731317 B.C.
In this and other such lists, the eclipses are arranged in eighteen-year groups.
Because some of the circumstances of lunar eclipses repeat in an eighteen-
year cycle, the scribes were soon able to use the records of past eclipses to
predict future eclipses.”

The reign of Nabonassar (747—733 B.C.) is especially important from the
viewpoint of later Greek astronomy. Both the quantity and the quality of
Babylonian observations improved dramatically starcing around this time. The
eclipse records are only one aspect of this change. When, several centuries
later, the Greek astronomers gained access to Babylonian observational records,
the oldest useful material was from the eighth century. The beginning of the
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FIGURE 1.4. An outline of
Babylonian astronomy.
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reign of Nabonassar was therefore used by later Greek astronomers as a
fundamental reference point in their system of reckoning time.

After about 900 B.C., Babylonia came increasingly under the military and
political influence of Assyria, a kingdom located to the north, farther up the
valley of the Tigris. Historians of ancient Mesopotamia therefore often refer
to the whole period from about 900 B.C. to the rise of the Chaldaean dynasty
as the Assyrian period. The growing Assyrian intervention in Babylonian
affairs came to its logical conclusion in 728 when Tiglath-Pilesar III of Assyria
established direct rule over Babylonia. While the Babylonians could no longer
effectively oppose the milirary strength of Assyria, Babylonian culture did
prevail, as the conquerors adopted much of the culture of the conquered. A
good example comes from the reign of the Assyrian king Ashurbanipal. This
king set out to acquire a complete library of all known literature—Sumerian,
Babylonian, Assyrian. Vast numbers of tablets were copied on his orders and
stored at his library in Nineveh. This library, discovered by British archaeolo-
gists in 1853, is a major source of our knowledge of Babylonian literature.
Ashurbanipal was also responsible for rebuilding the temple Esangila at Baby-
lon, which had been badly damaged.

Shortly afterward, the Assyrians overextended themselves in ambitious
military campaigns and their empire collapsed with astonishing rapidity. A
Chaldaean, or Neo-Babylonian, dynasty was established in 625 8.c. by Nabopo-
lassar. The Chaldaeans were originally a tribe from the southern part of
Babylonia, who gradually assumed a greater importance in Babylonian affairs
before finally putting a king of their own into power. During the Chaldaean
dynasty, Babylonian culture underwent a renaissance which extended to astron-
omy. As mentioned earlier, a notable difference between early Greek and early
Babylonian astronomy is that in Babylonia there was a social mechanism for
making and recording astronomical observations and for storing and preserving
the records. Scribes at the temple Esangila in Babylon had the responsibility
of watching the sky every night and recording all that transpired—observations
of the Moon and planets, as well as of the weather, the depth of the river,
and so on. The resulting documents are called astronomical diaries. Large
numbers of these astronomical diaries have been found. The oldest we possess
come from the seventh century B.c., but they probably began a century earlier.
Babylonian astronomy of the Chaldaean period and a bit later had a major
influence on the development of Greek astronomy. Greek and Roman astro-
nomical writers usually referred to the Babylonians as Chaldaeans. And often
Chaldaean was used by Greek and Roman writers to mean an astronomer or
astrologer of Babylon.

In 539 B.C., Babylon was conquered by Cyrus, the king of the Persians,
an Iranian people to the east. This was during the period of rapidly rising
Persian power. It was only a generation later when the Persians made the first
of their attempted invasions of Greece. The crushing defeat of Xerxes” navy
and army in Greece in 480/479 B.c. marked the beginning of the decline of
Persian power.

Babylonian astronomy continued to develop without noticeable hindrance
during the period of Persian rule. Indeed, there was a rapid increase in
sophistication. Early Babylonian astronomy was fairly crude and simple, and
the pace of development was very slow before the seventh century. After about
650 B.C., the pace picks up. But the most rapid advances were made starting
about the middle of the Persian period. The equal-sign zodiac was developed
as a rationalization of the much older zodiac constellations. In the fifth century
B.C., if not a little earlier, the Babylonians regularized their calendar on the
basis of the nineteen-year cycle: 19 years = 235 months. Thus, in nineteen
years, one counts twelve years of twelve months each and seven years of thirteen
months each. The greatest advances in Babylonian astronomy depended not
so much on better observations as on better use of mathematics.” The scribes



rapidly learned to apply elaborate arithmetical methods to astronomical prob-
lems. The use of arithmetic progressions (as in sec. 1.I) was a characteristic
technique.

In 331 B.C., Alexander, called the Great, conquered the Persian empire with
an army of Macedonian soldiers and Greek mercenaries. Alexander’s empire
lasted but eight years, for in 323 B.c. he died of a fever in Babylon. After
Alexander’s death, the empire broke up and his generals carved out kingdoms
for themselves. It took a generation of warfare for the map to become stable.
When the dust had settled, two kingdoms of considerable size and power
were established in non-Greek lands.

Ptolemaios | made himself king of Egypt. A Greek-speaking Macedonian
dynasty thus ruled Egypt from the end of the fourth century B.c. to the end
of the first century B.c., when Egypt was finally annexed as a province of the
Roman empire. The last of the Macedonian monarchs of Egypt was Queen
Cleopatra. As we shall see below, the Prolemaic dynasty was of considerable
importance to the development of Greek astronomy.

In the vast lands of the old Persian empire, stretching from the borders
of Egypt to the frontiers of India, and including Mesopotamia, Seleukos I set
himself up as king and established the so-called Seleucid dynasty. Now a
Greek-speaking ruling class administered a huge region, populated by peoples
of enormous variety in language, religion, and social customs. The history of
the Seleucid kingdom is quite different from that of Egypt. The central
government never was able to exert the same level of direct administrative
control over its far-flung provinces as could the government of Egypt. Almost
as soon as the kingdom was established, the eastern provinces began to break
off as the native peoples declared independence or as renegade Greek adminis-
trators rebelled and established their own kingdoms.

The Seleucid period is of enormous importance for the history of astron-
omy. It was during this time that Babylonian mathematical astronomy reached
its full maturity. The scribes succeeded finally in devising a mathematical
theory that permitted accurate numerical prediction of planetary phenomena.
The Seleucid period was also the time of most intimate contact between
Babylonian and Greek astronomy. However, Seleukos had made a decision
that was to lead inevitably to the decline of Babylon. Rather than rebuilding
the city and establishing his capital there, he built a new city, Seleucia, about
thirty-five miles away on the Tigris River. Babylon never regained its former
status.

On the eastern frontier of Mesopotamia, there was a resurgence of Iranian
power under the Parthian or Arsacid dynasty. In 125 B.C. the Parthians under
Mithradates II took Babylon and the period of Greek rule was over. The
Seleucids hung on in Syria until 64 B.c., when the last of their holdings were
annexed by the Roman empire.

Greek Astronomy

Hesiod’s Works and Days, discussed in section LI, summarizes the status
of Greek astronomy in the seventh century B.c. The subjects treated by
Hesiod—phases of the Moon, the annual solar cycle, and the annual cycle of
appearances and disappearances of the stars—constitute what we might call
the popular and practical astronomy of the Greeks. The origins of this popular
astronomy go back beyond the beginnings of writing. From about the fifth
century B.C. onward, we can recognize three different astronomical traditions,
all of which stemmed originally from the popular-practical astronomy of
remote antiquity. These three traditions may be characterized as literary,
philosophical, and scientific (see fig. 1.5).

The Literary Tradition The literary tradition involved the continuation and
elaboration of Hesiod’s theme. The preservers of this tradition were chiefly
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FIGURE 1.5. An outline of
Greek astronomy. The arrows
show continuing traditions and
directions of influence.
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poets, who sang of the constellations, the signs of the revolving year, and the
works of the farmer and the sailor. A notable poet of this genre was Aratus
of Soli in Cilicia, who around 275 B.C. wrote Phenomena, a poem of some
1150 lines. In the Phenomena, Aratus treated the constellations and their risings
and settings and provided a list of natural signs that might be used in making
weather predictions. The poem was extraordinarily popular and was translated
into Latin at least three times.

Latin poets composed original works in the same tradition. Notable among
these are Ovid (Fasti) and Viegil (Georgics). When astronomy and agriculture
ceased to attract the interest of the poets, the tradition was continued in
modified form by prose writers on agriculture. A good example is Columella
(ca. A.D. 50), whose treatise on farming was the most comprehensive of all
Roman works on this subject. Columella included in the eleventh book of
his treatise a farmer’s calendar, which gave for each month of the year the



astronomical signs of the season as well as the prescribed agricultural activity.
This mix of astronomical lore and agricultural advice continued to be popular
down through the Middle Ages. The same mix can be found in the grocery-
store almanacs of our own day.

The popular Greek and Latin works do not reflect the level achieved by
the ancient astronomers, just as today popular literature on the sciences does
not give a detailed picture of our own science. But the ancient popular works
are valuable because they give us an idea of the astronomical knowledge that
an ordinary educated person was likely to possess.

The Philosophical Tradition From the rise of Greek philosophy in the sixth
century B.C., its practitioners concerned themselves with the fundamental
causes of things. The nature of the heavenly bodies, their origin, the cause of
their motion, the shape of the Earth, and its position within the cosmos—all
these were subjects of intense argument and speculation. From the time of
Plato onward, Greek philosophy broadened to encompass new interests (e.g.,
ethics and esthetics). Nevertheless, considerable effort was still devoted to
physical principles. The dominant figure in physical thought was Aristotle
(fourth century B.c.). His chief doctrines affecting the science of astronomy
were that (1) the Earth is at rest at the center of the universe, (2) the universe
is finite and (3) changeless, and (4) the motions of the celestial bodies are
uniform and circular.

These doctrines were generally accepted by the Greek astronomers. The
first doctrine, on the situation of the Earth, agrees with our everyday percep-
tions. The second, on the finiteness of the universe, has a strong commonsense
appeal. The last two doctrines seemed well confirmed by observation. The
Aristotelian conception of the heavens was one part of the mental equipment
that every astronomer brought with him when he attacked a scientific problem.
Yet it is easy to overstate its importance. In the first place, there was much
greater diversity of opinion over physical matters than is commonly claimed.
Second, the astronomers often showed themselves capable of questioning or
even abandoning Aristotle’s tenets when it seemed necessary to do so.

The diversity of physical thought can be illustrated by the controversy over
a single topic—the existence of a void place. Two different possibilities must
be distinguished. If the cosmos is finite, there might be a void place outside
it. And there might be void places within the cosmos itself, as hollows within
apparently solid objects. Three different schools of thought can be identified
in Greek philosophy. The Aristotelians denied the existence of both kinds of
void and gave many convincing arguments. For example, a void place would
offer no resistance to the motion of objects, which would therefore rush along
with infinite speed—which would be absurd.

The Stoic school, among whom Posidonius (first century 8.c.) was promi-
nent, agreed that there could be no void place within the cosmos. For,
according to the Stoics, the cosmos was held together by a kind of breath or
tension, which would be broken by a gap in the material of the cosmos.
Without this tension to maintain it, the cosmos would fly apart. The Stoics
disagreed with Aristotle, however, on the possibility of a void place outside
the cosmos: they needed it to explain condensation and rarefaction. When
wood is burned the smoke takes up more space than the wood did. Evidently,
the cosmos must expand. Thus, in the Stoic doctrine, the cosmos alternately
contracts and expands into the infinite void space beyond it.

A third distinct view was offered by the Atomists, who boldly accepted
both kinds of void. The founding figures of this school were the Greek
philosophers Leucippus and Democritus (fifth century B.c.). But the most
comprehensive surviving exposition of their views is the Latin poem On the
Nature of Things of Lucretius (first century B.c.). The Atomists’ universe,
which really is rather frightful, but which we have come ultimately to accept,
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consisted of atoms traveling in infinite void space. In antiquity, this was always
a minority view. But the Greeks were no more unanimous in physical doctrine
than in politics or religion.

The second point to bear in mind in assessing the importance of Aristote’s
physics is that the astronomers were capable of abandoning it whenever it
seemed expedient. It was accepted that the heavens were changeless: no shifts
in the figures of the constellations had ever been detected through generations
of observation. Yet Hipparchus and Ptolemy recorded many sightings of three
stars that lay on the same straight line for the purpose of allowing future
generations to check whether these stars might actually shift with respect to
one another. The astronomers did not believe that the constellations would
actually suffer any changes, but they were willing to entertain the possibilizy.
And, again, when the observations seemed to demand it, the astronomers
introduced nonuniform motions into their planetary theories—a serious depar-
ture from Aristotelian physics. There were even a few astronomical thinkers
who asserted, against the majority opinion, that the Earth moves around the
Sun. The Greek astronomers simply never were the blind slaves to Aristotle’s
system that they sometimes have been made out to be.

With these qualifications in mind, we may still say that Aristotelian doctrine
guided the majority of Greek astronomers in their physical thought. Prolemy,
for example, mentions Aristotle by name in a prominent place: in the first
chapter of the first book of the Almagest.

The Scientific Tradition Scientific astronomy in Greece began in the fifth
century B.C. The summer solstice of 432 B.c. was observed at Athens by Meton
and Euctemon. This is the oldest dated Greek observation that has come
down to us. It was used by later generations of astronomers in several successive
efforts to determine a more accurate value for the length of the year.

In the early stages, much effort was devoted to traditional problems of
time reckoning. Meton’s name is attached to the so-called Metonic or nineteen-
year cycle. The same cycle was discovered earlier in Babylonia. Whether
Meton’s result represents a borrowing from Babylonian sources or an indepen-
dent discovery, we do not know. Euctemon is known to have devised a
parapegma or star calendar, which listed chronologically the appearances and
disappearances of the most prominent stars in the course of the year, together
with associated weather predictions. The original motivation behind the star
calendar must have been the desire to improve on, or to supplement, the
chaotic Greek civil calendars. Fach Greek city had its own calendar, with its
own month names. In different cities, the year might begin with different
months. Moreover, no two cities followed the same practice in the insertion
of the occasional thirteenth month. Thus, a citizen of Athens and a Greek
from Thessaly, for example, could not communicate a time of year to one
another by mentioning a month name and a day of the month. But they
could communicate unambiguously by means of star phases: the morning
rising of Arcturus meant the beginning of fall for everyone. Nearly all Greek
astronomers of this period concerned themselves with star calendars. In so
doing, they continued and refined a tradition that dated back to Hesiod.

As their science matured, the astronomers became interested in questions
with less immediate practical significance: “pure science.” By the fourth century
B.C. the Earth had been proven to be a sphere and its size had been estimated
by means of astronomical observations. It is not known who made these
observations and first deduced from them the size of the globe, nor are any
details of their methods known. But Aristotle summarized their results in his
treatise On the Heavens (ca. 350 B.C.). The famous measurement of the size
of the Earth by Eratosthenes, who used the fact that the Sun shone vertically
down into a well at Syene, Egypt, on the summer solstice, was made about
a century later.



The first Greek attempt to explain the complex motions of the planets
was made by Eudoxus, who came from Cnidus on the western coast of Asia
Minor but who traveled to Athens twice and knew both Plato and Aristotle.
Eudoxus is known also to have written a treatise on the celestial phenomena,
which contained a description of the constellations and of the principal circles
on the celestial sphere. This prose work, which has not survived, served as
the inspiration and model for Aratus’s verse Phenomena, mentioned earlier.
This is a notable, and early, example of the influence of a scientific writer on
a poet.

None of the works of the scientific astronomical writers mentioned thus
far (Meton, Euctemon, Eudoxus) have come down to us. We know the titles
of some of their works, and have a partial understanding of their contents,
only because of citations made by later writers. The oldest surviving works of
Greek mathematical astronomy are those of Autolycus of Pitane (ca. 320 B.C.).
In one of his works, On the Revolving Sphere, Autolycus proved a number of
theorems concerning the daily revolution of the sphere of the heavens. In
another, On Risings and Settings, he provided a geometrical treatment of the
old problem of the annual appearances and disappearances of the stars. It is
noteworthy that one of the oldest surviving works of Greck astronomy is
devoted precisely to the practical problem of telling the time of year, first
sketched by Hesiod and then elaborated in the parapegma tradition. Euclid’s
Phenomena, a short, elementary treatise on geometrical matters relevant to
astronomy, dates from about the same period.

During the period of early Greek astronomy (fifth and fourth centuries
B.C.), Athens was the intellectual center of the Greek world. Although many
intellectuals came from other parts of the Greek world—and notably Ionia,
on the western coast of Asia Minor—many of them went to Athens to study
or'teach. Eudoxus is a good example.

Alexander’s military career changed this, along with so much else. Alexander
was a great founder of cities, all of which he named after himself. Most of
these new cities never amounted to much. Burt after his conquest of Egypt,
Alexander founded a city at the mouth of the Nile. This Alexandria grew
rapidly in size and wealth. In a short time, it became the most important
center of commerce in the eastern Mediterranean. From the late fourth to
the late first century B.C., Egypt was ruled by a Greek-speaking Macedonian
dynasty named for Ptolemaios I Soter, the general who made himself king of
Egypt after Alexander’s death.

The first two kings of the Ptolemaic dynasty, Prolemaios I Soter and
Prolemaios II Philadelphos, were great patrons of the arts and sciences. They
founded and supported the Museum and Library at Alexandria. The Museum,
the first establishment ever to go by this name, was an institution of higher
learning, dedicated to the muses. The members of the Museum lived on the
grounds, held their property in common, and devoted themselves to literary,
philosophical, and scientific studies. The Alexandrian Library became the
greatest in the world.” Alexandria became the place to go if one wanted to
study literature, mathematics, or science, as Athens once had been. Moreover,
because of the fertility of the Nile valley, Egypt was a fairly wealthy country.
Although the kings of Egypt carried on intermittent border warfare with
their neighbors, the country’s geographical situation protected it from serious
military threat. Thus, the Prolemaic kingdom of Egypt was far more stable
and secure than its neighbors. As a result of all these factors—wealth, political
stability, and royal patronage—the history of later Greek astronomy is largely
centered on Alexandria. Many of the later astronomers and mathematicians
of note lived or at least spent some time there.

Good examples are Aristyllos and Timocharis (ca. 290 B.c.), who worked
at Alexandria, and who are known to us because some of their observations
were used by later writers. The observations of Timocharis and Aristyllos are
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not all that great in number; nevertheless, they constitute the oldest surviving
body of careful astronomical observations in the Greek tradition. Thus, system-
atic observation started much later in the Greek world than in Babylonia.
Moreover, the Greeks never did develop much devotion to regular observation.
For this reason, the later Greek astronomers, notably Hipparchus and Ptolemy,
made as much or more use of Babylonian observations that had come into
their possession as they did of observations by Greek astronomers.

The greatest successes of Greek astronomy came not so much from straight
observation as from the application of geometry to the problems of astronomy
and cosmology. The geometrization of the cosmos had begun with the mea-
surement of the size of the Earth and the working out, by Eudoxus and
Autolycus, of the theory of the celestial sphere. This program was continued
by a calculation of the sizes and distances of the Sun and Moon by Aristarchus
of Samos (ca. 270 B.c.). Aristarchus’s results clearly demonstrated the power
of geometrical methods in astronomy.

Indeed, one of the critical developments of this period was the rise of
Greek geometry, which led rapidly to the mathematization of Greek astron-
omy. Notable geometers of this period were Euclid, Archimedes, and Apollon-
ius of Perga. Apollonius (ca. 225 B.C.) seems to have been the first to experiment
with combinations of deferent circles and epicycles in an attempt to provide
an explanation for the motions of the planets, Sun, and Moon. The work on
the solar and lunar theories was carried to a high level by Hipparchus (ca.
140 B.C.). For the first time in Greek astronomy, it became possible to make
quantitative predictions of the future positions of the Sun and Moon, as in
the prediction of eclipses.

Cross-Disciplinary and Cross-Cultural Fertilization Two important events at
about this time were of great benefit to Greek astronomy: first, the development
of trigonometry, and second, the borrowing of astronomical results and mathe-
matical procedures from the Babylonian tradition. In both of these develop-
ments Hipparchus played a major role.

Before the development of trigonometry, computation by geometrical
methods had been laborious. For example, Aristarchus, in his treatise On the
Sizes and Distances of the Sun and Moon, concluded that the distance of the
Sun from the Earth is greater than eighteen times, but less than twenty times,
the distance of the Moon from the Earth. To a modern reader, Aristarchus
probably appears to be qualifying his result in accordance with the estimated
sizes of the errors in his observational data. Actually, the range expressed in
his final answer has nothing to do with his data, but rather reflects his methods
of calculation. Aristarchus was able to prove geometrically (i.e., by the methods
of Euclid) that the ratio of the Sun’s distance to the Moon’s distance was
greater than 18, and, by another construction, that it was less than 20. He
was unable to obtain the actual value of the ratio, so in proper Greek geometri-
cal fashion, he rigorously deduced an upper and a lower limit for this ratio.
A precise solution of such a problem required the methods of trigonometry,
tables of sines, and so on. The rapid development of Greek mathematics
greatly expanded the ability of astronomy to deal with the problems presented
by the celestial motions. Indeed, astronomy was so firmly based on the methods
of geometry and trigonometry that it was usually regarded as 2 branch of
mathematics.

The second major stimulus in the second century B.c. came from Babylonia.
By the early Seleucid period, the Babylonians had developed theoretical meth-
ods for predicting the positions of the planets. But the Babylonian theory was
based on arithmetic rules rather than on geometrical models, as was the case
with Greek planetary theory. Moreover, as far as we can tell from the surviving
sources, the Babylonian planetary theory had no elaborate philosophical under-
pinning—there seems to have been no set of physical principles comparable



to those that Aristotle provided for the Greek astronomers. The Greeks,
therefore, could not take their physical principles or geometrical cosmology
from the Babylonians, but they could, and did, borrow their observational
results, as well as some techniques of calculation. The Babylonians had, for
example, obtained accurate values for the tropical and synodic periods of the
planets, which the Greek astronomers adopted and applied to their own
geometrical planetary theory. There were also records of lunar eclipses observed
in Babylon that went back to about 730 B.c.—much earlier than the oldest
useful Greek observations. A number of these lunar eclipses were used by
Hipparchus and Prolemy in refining their lunar theory.

While there is evidence of earlier Greek contact with Babylonian astronomy
(e.g., in the names and figures of the zodiac constellations), the great period
of Babylonian influence was centered in the second century 8.c. This is not
surprising in view of the larger political, military, and cultural picture. Greek
astronomy had already matured to the point at which it could greatly benefit
from the Babylonian example. Moreover, contact was now easy, for Mesopota-
mia, like Egypt, was ruled by a Greek-speaking Macedonian dynasty. All over
the Middle East, Greeks were thrown into contact with other peoples. It used
to be common to speak of the “Greek miracle,” as if the Greeks had in one
swoop invented science, right along with history, poetry, and democracy.
‘While the Greek achievement in astronomy and mathematics was truly remark-
able, we can no longer regard it as withour roots in other and older cultures.
The debt of the Greeks to Babylonian astronomy was not recognized until
our own century and was only made clear through the decipherment and
study of Babylonian astronomical texts on clay tablets unearthed at the end
of the nineteenth and the beginning of the twentieth century.” It has also
become clear that the later Greek astronomers—Ptolemy, for example—did
not themselves appreciate how much their own predecessors had borrowed
from the Babylonians.

Prolemy and the Culmination of Greek Astronomy The culminating figure of
Greek mathematical astronomy was Klaudios Prolemaios—or Ptolemy, as he
is usually called today. Ptolemy lived and worked at Alexandria during the
first half of the second century a.n. (Ptolemy was not related to the Greek
[Prolemaic] kings of Egypt. But medieval writers sometimes made this confu-
sion, so one can see medieval images of Ptolemy with a crown on his head.)

It was Prolemy who brought Greek planetary theory into its final, very
successful, form. Ptolemy’s system was set out in a work that is known today
as the Almagest. The original title was something like The 13 Books of the
Mathematical Composition of Claudius Prolemy. Later the work may simply
have been known as Megale Syntaxis, the Great Composition. The superlative
form of the Greek megale (great) is megiste. Arabic astronomers of the early
Middle Ages joined to this the Arabic article al-, giving al-megiste, which was
later corrupted by medieval Latin writers to A/magest. A thousand years of
history, embracing Greek, Arabic, and Latin traditions, are thus contained in
this one word. No better example could be wished of the continuity of the
Western astronomical tradition.

Ptolemy’s work was the definitive treatise on mathematical astronomy. The
Almagest is one of the greatest books in the whole history of the sciences—com-
parable in its significance and influence to Euclid’s Elements, Newton’s Prin-
cipia, or Darwin’s Origin of Species. Ptolemy’s Almagest dominated the study
and practice of astronomy from the time of its composition until the sixteenth
century. Just as Ptolemy influenced all who followed him, so too he tended
to displace his predecessors. The technical works on mathematical astronomy
by his predecessors ceased to be read and copied, since their results were
included in, or superseded by, Ptolemy’s work. So, for example, none of
Hipparchus’s technical writings have come down to us. We know their titles
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and their partial contents only because of quotations made by Ptolemy in the
Almagest.

Sources for the History of Greek Astronomy Our single most important sourcé
is Prolemy’s Almagest. But it was written at the very end of the historical
development of Greek astronomy. The earlier works that have come down
to us are mainly shorr treatises on specialized topics, with easy or no mathemat-
ics, that were copied because they were suitable for use in the schools. Examples
are the writings of Theodosius of Bithynia On Geographic Places and On Days
and Nights, Euclid’s Phenomena, and Autolycus’s writings On the Revolving
Sphere and On Risings and Settings, which were mentioned earlier.

We have also three introductory Greek textbooks on astronomy that were
written around the beginning of the Christian era. These are the astronomical
primers by Geminus, Theon of Smyrna, and Cleomedes. Although these
works are nontechnical, having been intended for beginning students, they
do include a number of details that can teach us something about the develop-
ment of Greek astronomy before Ptolemy. For example, Geminus provides a
valuable discussion of calendrical cycles, a subject not discussed by Prolemy.
Cleomedes is our main source for the famous measurement of the size of the
Earth made by Eratosthenes.

We also have some encyclopedic compositions by Latin writers. For exam-
ple, the second book of Pliny’s Natural History is devoted to astronomical
matters. Pliny’s treatment is nontechnical, and his understanding of astronomi-
cal matters is often defective. Nevertheless, he had access to works that now
are lost and so sheds some light on the development of planetary theory during
the nearly three centuries that elapsed between the activities of Hipparchus and
those of Ptolemy. Several other Latin works on specialized topics are also of
use. Vitruvius’s work On Architecture, for example, is an important, if often
disappointing, source of information on the theory and art of sundial construc-
tion.

Finally, we have a number of astronomical papyri from Greco-Roman
Egypt. Most have been recovered by archacological excavation of ancient
garbage dumps or cemeteries—scrap papyrus was sometimes used to wrap
mummies. Most astronomical papyri are of rather low intellectual quality.
Many were rough notes, some probably taken by students. But they do throw
light on the subject, because they are almost the only Greek astronomical
documents we have that survive directly from ancient times (as opposed to
medieval copies of ancient Greek texts).

Many of the later sources for the history of Greek astronomy are outside
the main stream of Greek science. The primers by Geminus and others, for
example, stand somewhere between the scientific and the literary traditions.
These works were not, even at the time they were written, at the forefront
of the science. Geminus is fond of quoting poets, such as Homer and Aratus,
to illustrate astronomical points. In fact, he quotes literary men much more
often than astronomers. The primers by Cleomedes and Theon of Smyrna
also show marked affiliations with particular philosophical schools. Cleomedes
departs from astronomical matters to expound Stoic physics. Theon of Smyr-
na’s book has a strong Platonist flavor. In works of this kind, intended for a
popular audience, or for students, we see a mixing of several traditions—literary,
scientific, and philosophical.

The astronomers also devoted a good deal of time to “applied science,” in
works that did not break much new ground. For example, both Hipparchus
and Ptolemy composed star calendars. Prolemy’s star calendar was not included
in the Almagest, for by his time the star calendar had no place in a treatise
on mathematical astronomy. Rather, he presented his star calendar in a short,
separate work wholly devoted to this special topic. Ptolemy composed other
works on special applications of astronomy. He wrote a short treatise, for



example, on the construction of sundials, and a longer one on astrology. All
of these special applications of astronomy were regarded as distinct from
the pure astronomy of the Almagess, which was concerned with rigorous
trigonometric demonstrations from accurately made observations.

After the second century a.p., Greek astronomy, and Greek science in
general, went into decline. Why this happened is a great problem, bound up
with the general collapse of classical culture. Some of the reasons were the
rise of Christianity, which focused on the next world and had less interest in
the sciences of this world; the military pressure of the tribes moving in from
the Eurasian steppe; and the rigidity and weaknesses of an economic system
based largely on slave labor.

Ptolemy had no successor. No Greek astronomer who followed him man-
aged to advance the enterprise. Pappus and Theon of Alexandria (fourth
century A.D.) wrote commentaries on the Al/magest, but these had little to add
to Prolemy. After Prolemy, astronomy marked time for six hundred years,
until the Islamic revival of astronomy that began around a.p. 8oo.

Astronomy in Medieval Islam

During the period A.p. 8001300, Arabic was the dominant language of science
and philosophy, as Greek had been in the preceding centuries. The first
flowering of Arabic astronomy occurred in Iraq and Syria. A stimulus of
enormous importance was the patronage of al-Ma’miin, the seventh Abbasid
caliph (ruled 813-833). Al-Ma’miin established at Baghdad a House of Wisdom,
in which scholars, supported by the state, devoted themselves to literary,
philosophical, and scientific studies, including the translation of Greek scien-
tific and philosophical works into Arabic. Al-Ma’miin’s House of Wisdom
was as significant an insticution as the Museum founded at Alexandria a
thousand years earlier by the Prolemies.

Although the astronomical renaissance began in the Middle East, by the
eleventh century another center of activity had emerged in Islamic Spain. The
history of this development is very complex. Chronologically, we are concerned
with a period of four or five centuries. Geographically, the arena stretches
from the borders of India to Spain. The two unifying principles of this history
are religion and language. The dominant religion was Islam, which put its
imprint on every aspect of the culture, including art, literature, philosophy, and
science. For this reason, some historians prefer to characterize the astronomy of
this period as Islamic astronomy. By this, one does not mean that every
astronomer was a Muslim or that the fundamental character of the astronomy
came directly out of the Islamic faith. But Islamic does serve to characterize
the cultural setting. One must keep in mind, however, that chere were Christi-
ans, Jews, and followers of other faiths who practiced astronomy and wrote
books about astronomy in Islamic lands. One must also keep in mind that
Islamic astronomy was, in its fundamental character, a continuation of the
astronomy of the Greeks.

For this reason, some historians prefer to speak of Arabic astronomy, referring
only to the dominant language of its communication, and not meaning to
imply that every astronomer was ethnically an Arab or that every astronomer
wrote in Arabic. For we must keep in mind chat astronomical works in other
languages, such as Syriac, Hebrew, and Persian, are a part of this story.

At first, the Arabic scientists learned their astronomy by studying the classics
of Greek science. The Almagest of Prolemy was the standard textbook for
advanced study of astronomy and was translated into Arabic several times. It
was not long, however, before Arabic astronomers began to write their own
astronomical treatises. Taking advantage of the long time interval that had
elapsed between Ptolemy’s day and their own, Arabic astronomers made
discoveries that had escaped the Greeks—for example, the discovery of the
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decrease in the obliquity of the ecliptic. They also refined the art of making
and using astronomical instruments. The solar observations used to determine
the obliquity of the ecliptic and the eccentricity of the Sun’s orbit are of much
better quality in many medieval Arabic treatises than in Ptolemy’s Almagest.
The astrolabe, originally a Greek invention, was developed into a portable
instrument of elegance and beauty. It became the characteristic astronomical
instrument of the Middle Ages.

For the motions of the planets, Ptolemy’s theories in the Ahnagest remained
standard. Not every Islamic astronomer agreed with Ptolemy on every detail.
The numerical parameters of Ptolemy’s planetary theories could be, and often
were, improved. Differences in philosophy sometimes led astronomers to
question the geometrical models that Prolemy had invented to explain the
motions of the planets. The most frequent complaint was that Ptolemy had
not stuck closely enough to the philosophy of Aristotle, especially the principle
of uniform circular motion. But Arabic astronomy remained fundamentally
Ptolemaic in both its basic assumptions and its methods.

Astronomy in Christian Europe

By comparison with the Islamic culture of the Mediterranean, the Christian
lands of western and northern Europe were very backward. Here, in the
wreckage of the Western Roman Empire, learning was protected in the monas-
tic schools, but science and mathematics had fallen to an abysmally low level.
Greek astronomical works were unknown and astronomy was studied only
from a few elementary Latin works, such as Pliny’s Natural History. The
rebirth of the sciences began in the twelfth century, with the reacquisition of
the classics of Greek mathematics and astronomy. At first, these were translated
into Latin from Arabic translations of the Greek originals. Only somewhat
later were Latin translations made directly from the Greek. An influential
Latin translation of Prolemy’s Almagest was made from the Arabic by Gerard
of Cremona, at Toledo around a.p. 1175. It was largely from this translation
that Europeans learned their technical astronomy for the next three hundred
years. By the middle of the thirteenth century, Europeans were writing their
own introductory textbooks of astronomy. Latin versions of a number of
Arabic manuals were also in circulation. But for technical astronomy, one still
had to go back to Ptolemy.

The work that did the most to dismantle the universe of the Greeks was
that of Copernicus, On the Revolutions of the Heavenly Spheres (1543). Coperni-
cus took a radically new view of the world and asserted that the Earth is a
planet moving around the Sun. This turned the old cosmology inside out.
But on closer examination, Copernicus’s work, great as it is, turns out to be
less radical than one might suppose. The revolutionary part—the Sun-centered
cosmology—is introduced in the first book and constitutes only about 5% of
the text. The rest of On the Revolutions is a sort of rewrite of Ptolemy’s
Almagest. Theorem by theorem, chapter by chapter, table by table, these two
works run parallel. Although Copernicus disagrees with Prolemy about the
arrangement of the universe, he makes use of Ptolemy’s observations and
methods. In the technical details, Copernicus follows Ptolemy more often
than not. Copernicus may be regarded as one of the last, and one of the most
accomplished, astronomers in the Ptolemaic tradition.

his book is organized by topics: chapter 2 is devoted to the theory of the
celestial sphere, chapter 7 to the planets, and so on. While this arrangement
is by far the best for discussion of the actual practice of astronomy, it can
obscure the broad historical picture. The reader is invited to return to this



survey to see how a particular writer or topic fits into the broader picture.
Indeed, the reader may wish to make enlarged copies of figures 1.4 and 1.5

and add to them while working through the book.

1.3 OBSERVATION: THE USE OF THE GNOMON

The most ancient astronomical instrument is the gromon—a vertical stick set
up in a sunny place where it may cast a shadow. A great deal may be learned
about the motion of the Sun by following the motion of the tip of the shadow.
Herodotus says in his Histories, written around 450 B.C., that the Greeks
learned the use of the gnomon from the Babylonians.” It may have been so,
but Herodotus’s remark may simply reflect the Greek fondness for assigning
each advance in science and learning to a definite source. The gnomon probably
was discovered independently many times in many different culeures. In any
case, gnomons were used in Greece in the fifth century B.c. to observe summer
and winter solstices and perhaps also to tell time.

Your gnomon can be a short nail driven perpendicularly into a flat board.
Place a sheet of paper over the gnomon so that the gnomon punches a hole
in the paper. Tape the paper to the board to ensure that the paper does not
shift position. Label the paper in one corner with the date. Measure and
record the height of the gnomon. Make sure that the board is not moved
during the course of the day.

Now matk a dot at the tip of the gnomon’s shadow. Next to the mark
write the time of day. Mark the location of the shadow as early in the morning
as possible. After that, mark the shadow’s location once every half hour or so
until as late in the afternoon as possible. A well-made shadow plot should
stretch over six to eight hours and should contain twelve to sixteen plotted
points.

Make a new shadow plot once every two or three weeks to observe the
changes in the Sun’s behavior as the year progresses.

The interpretation of the shadow plot is the subject of section 1.4.

I.4 ON THE DAILY MOTION OF THE SUN

Interpreting a Shadow Plor

A great deal of information can be obtained from a well-made shadow plot.
We shall study the shadow plot in figure 1.6, which was made at Seattle on
February 19.

Local Noon Local noon is the time of day when the shadow of a vertical
gnomon is shortest. On the example plot, local noon fell between 12:02 and
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FIGURE 1.7. North is the direction of the
shortest shadow cast by a vertical gnomon.

FIGURE 1.8. Alternative method for finding
north.
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FIGURE 1.9. A vertical gnomon and its
shadow. 8 is the altitude of the Sun ©.

z is the Sun’s zenith distance.

12:53 p.M. Local noon need not occur at twelve o’clock. There are several
reasons for this. Most obviously, we set our clocks forward or backward by
a whole hour when changing to or from daylight savings time. But even if
we never used daylight savings time, local noon still would rarely occur at
wwelve o’clock, because the time of local noon wanders in the course of the
year—by about half an hour from one extreme to the other. (The causes of
this variation are discussed in sec. 5.9.)

The noon determined by a gnomon is called Jocal because the time at
which it occurs depends on the location of the observer. Local noon in New
York occurs some three hours earlier than local noon in San Francisco. This
is the astronomical fact that lies behind the modern use of time zones. But
even within a single time zone, there is a noticeable variation in the time of
local noon. A city in the extreme east of a time zone has local noon about
an hour eatlier than a city in the extreme west of the same zone.

Finding True North The direction in which the shortest shadow points is
called north (see Fig. 1.7). (On some parts of the Earth the shortest shadow
points south, but everywhere in the continental United States the shortest
shadow points north.) Although the clock time at which local noon occurs
varies during the year, the direction of the shadow at local noon is always the
same.

This is the fundamental definition of north. North definitely is not, for
example, the direction in which a compass needle points. In Washington
state, compass needles point about 22° to the right of north; in Maine, about
15° to the left of north. The angle by which the compass needle differs from
true north is called the compass declinarion and varies with position on the
Earth. Moreover, the compass declination at a particular locality may vary
slightly from year to year. Every accurately determined north-south line (as
in land surveying) depends on astronomical observation, usually of the Sun.

Alternative Method for Finding True North As it is difficult to tell exactly
where the shadow is shortest, let us consider an alternative procedure. Sketch
a smooth curve through the points of the shadow plot (fig. 1.8). Then place
the point of a drawing compass at the gnomon’s base C and draw a circle,
which intersects the shadow curve in two places, A and B. Now draw lines
CB and CA. Finally, draw a line that bisects angle ACB. This line cuts the
circle at point D. Line CD then points north.

The direction of north established in this fashion should agree with the
direction of the shortest shadow. The reason this method works is that the
afternoon half of the shadow plot is a mirror image of the morning half. The
line that divides the shadow plot into two similar halves is the north-south
line, and the shadow falls along this line at local noon.

Direction of Sunrise or Sunset  In the example shadow plot, the early morning
shadows fell to the northwest (fig. 1.7). The early morning Sun had to be in
the opposite direction (southeast) for the gnomon’s shadow to fall so. Evi-
dently, the Sun rose in the southeast. People often say that the Sun rises in
the east and sets in the west. But this is speaking loosely. Only twice a year
(at the equinoxes, March 20 and September 23) does the Sun rise exactly in
the east and set exactly in the west.

Altitude of the Sun at Local Noon 'The altitude of an object, such as the Sun,
is its angular distance above the horizon. At local noon the Sun’s altitude is
the largest for that day. In figure 1.9, O represents the Sun. GH is the gnomon,
(7T is a ray of sunlight, and TH is the length of the shadow. 0 is the altitude

of the Sun. In figure 1.9, we have



o GH
tan = TH

The gnomon used to make the original shadow plot of figure 1.6 was 1.0 cm
tall, and the length of the noon shadow on the original plot was 1.7 cm. Using
these values, we have

van @ = BOCm _
an 0 = L7 om 0.59.

6 = ran"(0.59) = 31°.

The altitude of the Sun may also be found by laying out GH and 7H on a
scale drawing and measuring 6 with a protractor.

Some Useful Terms

Several useful terms can be defined by reference to the shadow plot. A meridian
is a line on the surface of the Earth that runs exactly north-south. The local
meridian is the north-south line that happens to pass through the locality in
question. Each meridian, extended far enough, is a great circle on the surface
of the Earth. The meridians all meet at the north and south poles of the
Earth.

The zenith is the point of the sky directly overhead (see fig. 1.9). The
zenith may be defined by means of a plumb line, that is, a string from which
a small weight is suspended. All plumb lines point down toward the center
of the Earth.

The zenith distance of a celestial object is its angular distance measured
down from the zenith. In figure 1.9, the zenith distance of the Sun is angle z.
The zenith distance is the complement of the altitude; that is, z = 90° — 6.

The celestial meridian is a great circle on the dome of the sky. Imagine
standing with your arm parallel to the ground, pointing directly north. Then
swing your arm up until it points at the zenith. Then swing it on over, until
it comes down behind you and points south. If you had a pencil in your
hand, you could imagine drawing a semicircle on the dome of the sky. This
circle, which passes through the north point, the zenith, and the south point,
is called the celestial meridian.

The sky may be regarded as a great sphere that surrounds the little sphere
of the Earth. When we think of the sky in this way we usually call it the
celestial sphere (sce Fig. 1.10). Directly underncath the celestial meridian is the
meridian line that runs along the ground, from north to south. The meridian
on the ground is sometimes called the terrestrial meridian. The terrestrial
meridian may be regarded as a projection of the celestial one.

Historical Example of the Use of a Gnomon

Marcus Vitruvius Pollio was a Roman architectural writer who lived in the
reign of Augustus (late first century B.c.). His only surviving work, commonly
known as the Ten Books on Architecture, is an important source of informarion
on Roman techniques of design, construction, and decoration. The work was
much studied and was extremely influential during the revival of the classical
style in the Renaissance. Vitruvius is a valuable source for the history of
astronomy as well, mainly because of his ninth book, which includes a treat-
ment of the design of sundials. We return to Vitruvius’s discussion of sundials
in section 3.2.

Here we examine only his prescription for laying out the streets of a city,
which involves an interesting use of the gnomon. Vitruvius begins by remarking
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FIGURE I.II. Vitruvius’'s construction of the
meridian and the directions of the eight winds.

that if a city is to be properly designed, some thought must be given to
excluding the winds from the alleys. Lack of such foresight has, in many a
case, rendered a city very unpleasant, and Vitruvius cites as an example
Mytilene on the island of Lesbos. This city was built with magnificence and
good taste, but it was not prudently situated. When the wind is from the
south, men fall ill; when it is from the northwest, they cough. When the
wind is from the north, they recover, but they cannot stand about in the
streets and alleys because of the severe cold.

Vitruvius then takes up the subject of the winds themselves. Some have
held that there are only four: Solanus from due east, Auster from the south,
Favonius from due west, Septentrio from the north. However, more careful
investigators say there are eight. To the four winds already named, Vitruvius
adds Eurus from the winter sunrise point (i.e., the southeast), Africus from
the winter sunset (the southwest), Caurus or Corus from the northwest, and
Aquilo from the northeast. Each of these winds had its own characteristics:
hot or cold, damp or dry, healthful or unhealthful. Each was most likely to
blow at its own proper season. Furthermore, the wind names were often used
to indicate directions. We shall encounter them, and their Greek equivalents,
again in secrion 3.I.

Having established these preliminaries, Vitruvius tells how to determine
the directions of the various winds. In the middle of the city, lay and level a
marble plate, or else let the spot be made so smooth and true by means of
rule and level that no plate is necessary. In the center of that spot set up a
bronze gnomon to track the shadow, at a point called A. The following extract
reproduces Vitruvius’s instructions for establishing the quarters of the eight
winds (see fig. 1.11).

EXTRACT FROM VITRUVIUS
Ten Books on Architecture 1, 6

Let A be the center of a plane surface, and B the point to which the shadow
of the gnomon reaches in the morning. Taking A as the center, open the
compasses to the point B, which marks the shadow, and describe a circle.
Put the gnomon back where it was before and wait for the shadow to lessen
and grow again until in the afternoon it is equal to its length in the morning,
touching the circumference at the point C. Then from the points B and C
describe with the compasses two arcs intersecting at D. Next draw a line from
the point of intersection D through the center of the circle to the circumference
and call it EF. This line will show where the south and north lie.

Then find with the compasses a sixteenth part of the entire circumference;
then center the compasses on the point £ where the line to the south
touches the circumference, and set off the points G and H to the right and
left of E. Likewise on the north side, center the compasses on the circumfer-
ence at the point F on the line to the north, and set off the points 7 and
K to the right and left; then draw lines through the center from G to K
and from A to I Thus the space from G to H will belong to Auster and
the south, and the space from 7 to X will be that of Septentrio. The rest
of the circumference is to be divided equally into three parts on the right
and three on the left, those to the east at the points L and A, those to the
west at the points N and O. Finally, intersecting lines are to be drawn from
M to O and from L to N. Thus we shall have the circumference divided
into eight equal spaces for the winds. The figure being finished, we shall
have at the eight different divisions, beginning at the south, the letter G
between Eurus and Auster, / between Auster and Africus, NV between
Africus and Favonius, O between Favonius and Caurus, X between Caurus
and Septentrio, / between Septentrio and Aquilo, L between Aquilo and
Solanus, and A between Solanus and Eurus. This done, apply a gnomon
to these eight divisions and thus fix the directions of the different alleys.”



Vitruvius recommends that the streets be laid out on lines of division
between winds, for if the streets run in the direction of a wind, strong gusts
will sweep through them. But if the lines of houses are set at angles to the
winds, the winds will be broken up. Vitruvius’s use of the gnomon to establish
the meridian and other directions was not original but was a traditional
technique already several centuries old. His treatment does, however, illustrate
one application of elementary astronomy in antiquity.

1.9 EXERCISE: INTERPRETING A SHADOW PLOT

So, 1 said, it is by means of problems, as in the study of geometry, that
we will pursue astronomy too. . . .

Plato, Republic V11, s308—c.

Use the shadow plot that you made for section 1.3 to solve the following
problems.

1. At what clock time did local noon occur? Connect the points of your
shadow plot by a smooth curve. Try to judge exactly where the shadow
would be shortest, and estimate the time accordingly.

2. Which way is north? Use the bisection-of-the-angle method to find out.
Check to see that your north direction agrees fairly well with the direction
of the shortest shadow. Also draw in the directions south, east, and
west.

3. Which way is magnetic north? Reposition your shadow plot in exactly
the place where it was made. Place a magnetic compass on the shadow
plot and determine the direction in which the needle points. If your
gnomon is made of iron (as are most nails, for example), be careful to
keep the compass well away from the gnomon. Draw a line on your
plot representing the direction in which the compass needle points.
Extend this line until it crosses the true north-south line on your shadow
plot, which you drew in response to question 2. Use a protractor to
measure the compass declination. That is, what is the angle between
true north (determined by the Sun) and magnetic north (determined
by the compass)? Does the compass needle point too far east or too far
west?

4. In what direction did the Sun rise? In what direction did it set?

. At local noon, what was the altitude of the Sun?

6. Indicate on your shadow plot the directions of the eight winds mentioned
by Vitruvius.

“

1.6 THE DIURNAL ROTATION

Some Essential Facts

In a day the Earth makes one rotation on its axis. Thus, in figure L.I2, we
explain the risings and settings of the stars by supposing that the Earth rotates
from west to east about axis PQ. Points P and Q are the north and south
poles of the Earth.

Alternatively, we may regard the Earth as stationary and let the celestial
sphere (to which the stars are fixed) revolve from east to west about axis CD.
Point C'is called the north celestial pole. Similarly, D is the south celestial pole.
The celestial equator is a great circle on the celestial sphere, midway between
the poles. The Earth’s equator may be considered a projection of the celestial
equator.

As far as appearances are concerned, it makes no difference which view one
adopts. The ancient point of view—that the heavens revolve abour a stationary

THE BIRTH OF ASTRONOMY 31

Celestial Equator

Celestial
Sphere

D

FIGURE I.12. The Earth surrounded by the
celestial sphere.



32 THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

FIGURE LI3. Paths of the circumpolar stars-in
the northern part of the sky.
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Earth—is more convenient, for it pictures the world exactly as it appears to
our eyes. All those whose work involves practical astronomy (surveyors and
navigators as well as astronomers) habitually use the ancient point of view.
We, too, shall adopt it.

In a day and a night, the stars describe circles about the celestial pole.
Figure 1.13 represents a view toward the northern horizon, for an observer in
the northern hemisphere. The stars nearest the pole go around in small circles,
with the result that they do not rise or set but remain above the horizon for
twenty-four hours every day. Such stars are called circumpolar. Stars that lie
farther from the pole go around in larger circles, which pass beneath the
horizon. These stars therefore have risings and settings.

The location of the north celestial pole is marked nearly, but not exactly,
by a star of medium brightness variously called Polaris, the North Star, or the
Pole Star. Polaris can be located in the night sky with the aid of the Big
Dipper (figs. 1.14 and 1.15). Although Polaris is not especially bright, there is
lictle risk of mistake, for it has no near neighbors of comparable brightness.
Hold up a plumb line so that the string passes over Polaris. The north point
N is then the place where the plumb line crosses the horizon.

If Polaris were located exactly at the celestial pole, it would appear never
to move. Actually, Polaris is not precisely at the celestial pole; it is less than
1° from the pole. As a result, it describes a tiny circle of its own in the course
of a day.

Aspects of the Celestial Sphere

Parallel Sphere  The sky takes on different aspects when observed from differ-
ent places on the Earth. At the Earth’s north pole the celestial pole would
be seen at the zenith, as is clear from figure r.12. Thus, at the north pole,
the rotation of the celestial sphere carries all the stars around on circles parallel
to the horizon, as in figure 1.16. None of the stars rise or set. Rather, half
of the celestial sphere is permanently above the horizon, and half is perma-
nently below. Medieval astronomers often referred to this arrangement as the
parallel sphere, because the circles traced out by the stars are all parallel to the
horizon.

Right Sphere  Figure 1.17 represents the situation for point A located on the
Earth’s equator. Light from the North Star shines vertically down on the
north pole P. Because the star is very far away, compared to the size of the
Earth, all rays of light that leave the star and strike the Earth are essentially
parallel to one another. The ray that arrives at A has therefore been drawn
parallel to the ray arriving at P. This ray coincides with the horizon at A.
Thus, at the Earth’s equartor, the pole star would be seen on the horizon.

That is, at the equator, the celestial poles lie on the horizon. The diurnal
rotation therefore carries the stars on circles that are perpendicular to the
horizon, as in Figure 1.18. (Note that this figure is rotated by 90° with respect
to fig. r.17. It is often convenient to make the horizon horizontal!) At the
equator, all the stars rise and set vertically, and every star remains for twelve
hours below the horizon, and for twelve hours above. The celestial sphere,
observed from a place on the Earth’s equator, is said to be right, in the sense
of upright or perpendicular, because the paths of the stars are perpendicular
to the horizon.

Oblique Sphere  Figure 1.19 represents the situation for a point 4 located in
the northern hemisphere. The latitude of point A is angle L. Light arriving
at A from the North Star makes an angle o with the horizon. Thar is, the
altitude of the star above the horizon is a. It is easy to prove that o0 = L.
Draw AB parallel to the equator. Then 6 = L, since these angles are formed



by the intersection of two parallel lines (the equator and AB) with a given
line (CA). The rays from the North Star are perpendicular to the equator, so
v = 90° — 0. Similatly, the horizon is perpendicular to the zenith direction,
so we must also have ¥ = 90° — o Setting these two expressions for ¥ equal
to each another, we obtain the result we sought, o = L.

That is, the altitude of the celestial pole at a place on the Earth is equal to
the latitude of that place. This provides a way of determining the latitude of
any position on the Earth’s surface: measure the altitude of the pole star.
(Bug, since the pole star is not precisely at the celestial pole, a small correction
would have to be added to the measured altitude to get a perfectly accurate
value for the latitude.)

At intermediate latitudes (neither at the equator nor at the poles), the axis
of the celestial sphere is neither upright nor horizontal, and the sphere is said
to be obligue. Figure 1.20 represents such a situation. The observer and the
points N, E, S, and W are all on the horizon, which has been extended all
the way to the celestial sphere. The observer’s latitude is equal to angle £, the
altitude of the celestial pole. The figure has been drawn with L = 48°, the
latitude of Seattle or Paris.

As the celestial sphere revolves, the stars trace out circles parallel to the
equator. The diurnal paths of five stars have been shown on the diagram:
Kochab, Arcturus, Mintaka, Sirius, and Miaplacidus. These stars belong to
the constellations Ursa Minor, Boétes, Orion, Canis Major, and Carina.

Stars that lie near enough to the celestial pole may be circumpolar. At a
latitude of 48° N, such is the case for Kochab, which does not rise or set.

Stars that lie north of the celestial equator, but not far enough north to
be circumpolar, will rise and set. These stars all spend more than twelve hours
of each day above the horizon. This is the case for Arcturus. The diurnal path
of Arcturus is cut by the horizon into unequal parts, with the longer part
lying above the horizon. It is also evident that Arcturus rises north of east
and sets north of west.

Mintaka (8 Orionis) lies almost exactly on the celestial equaror. Conse-
quently, its diurnal path is cut by the horizon into two equal parts: Mintaka
spends twelve hours above and twelve hours below the horizon every day. As
figure 1.20 shows, the celestial equator (which is the diurnal path of Mintaka)
passes through the east and west points of the horizon. Thus, Mintaka rises
exactly in the east and sets exactly in the west.

Stars that lie south of the celestial equator remain above the horizon for
less than twelve hours. At 48° N, such is the case for Sirius. Sirius rises south
of east and sets south of west.

Stars far enough south of the celestial equator may also be circumpolar.
At 48° N latitude, such is the case for Miaplacidus (B Carinae). The diurnal
path of Miaplacidus, a small circle centered on the south celestial pole, lies
beneath the horizon. Thus, Miaplacidus is never seen from Seattle or Paris.

Note that a star may be circumpolar at one latitude, bur rise and set at
another latitude.

Methods of Demonstrating the Diurnal Rotation

The diurnal revolution of the stars is easily observed by means of a sighting
tube. This is simply a hollow tube attached to a stand (fig. 1.21). The tube
may be aimed at a star and clamped. After ten or twenty minutes, the rotation
of the celestial sphere will carry the star out of view of the tube. For example,
suppose the sighting tube is aimed toward a star that is low in the eastern
part of the sky. The tube is adjusted on its stand until the star can be seen
in the middle of the tube, as in figure 1.22A. After twenty minutes, the star
will no longer appear to be in the tube (fig. 1.22B) but will have moved
diagonally up and to the right.
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FIGURE LI§. A sixteenth-century guide to find-
ing the Pole Star. The Big Dipper is shown in

its alternative representation as a Wagon. The
Pointers (stars D and E) indicate the Pole Star,
at the tip of the tail of the Little Bear (some-
times called the Little Dipper). A second means
of finding the Pole Star is shown, using the left
foot B of Cepheus (y Cepheii) and star C of the
Wagon.

The middle star in the team that pulls the
Wagon is correctly shown as double. The princi-
pal star H is called Mizar. Its faint companion is
Alcor. It is for this reason that the middle horse
is depicted with a rider: this pair of stars is
sometimes called the Horse and Rider. Anyone
with good eyesight (whether corrected or natu-
rally so) should have no trouble picking out
Alcor on a clear night.

In the lower left is a folding, portable sundial
of a type that was popular in the Renaissance.
When the dial is opened, a string is pulled tight
and serves as the gnomon. For the dial to func-
tion properly, the gnomon string must point at
the celestial pole. The dial was also fitted with a
magnetic compass as an aid in orienting the
dial.

From the Cosmographia of Petrus Apianus, as
reworked by Gemma Frisius: Cosmographia . . .
Petri Apiani & Gemmae Frisii (Antwerp, 1584).
Photo courtesy of the Rare Book Collection,
University of Washington Libraries.

FIGURE LIG6. Parallel sphere: the sky as viewed
at the Earth’s north pole.
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FIGURE LI7. An observer A at the Earth’s
equator sees the North Star on the northern
horizon. An obsetver P at the north pole sees
the North Star straight overhead.
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FIGURE 1.I8. Right sphere: the sky as viewed
from a point on the Earth’s equator.
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FIGURE I1.I9. The altitude o of the celestial
pole is equal to the latitude L of the observer.

If, however, the sighting tube is aimed at the North Star, that star will
remain in the tube all night long. Indeed, the North Star will remain in its
sighting tube all day long as well, although it will not be visible.

These simple observations with a sighting tube reveal in a clear and immedi-
ate way the existence of the celestial pole and the rotation of the celestial
sphere. A fine sighting tube may be made from a one- to two-foot length of
aluminum or plastic tubing. For a mount, the tripod stand and clamps of
the college science laboratory serve well.

An even more dramatic demonstration of the diurnal rotation may be
made by means of what we shall call the compound sighting tube (refer to
fig. 1.23). One sighting tube, AB, is directed toward the Pole Star and clamped.
A second tube, CD, is directed toward some other star S and then clamped
to the first tube. The apparatus is so arranged that the two-tube assembly
may be rotated around axis AB, while the angle o between the two tubes
remains unchanged. As the night goes by, star S revolves in a circle around
the Pole Star—which is demonstrated by the fact that sighting tube CD may
be made to follow star § by rotating tube CD about the AB axis. That is, if
S has escaped from tube CD, the star may be recovered in that tube by a
simple rotation of the apparatus about axis AB.

Historical Note on the Dioptra

The sighting tube was known to the ancient Greek astronomers by the name
dioptra. In its original form it was not very different from the simple tube
and stand described above (fig. 1.21). There is, of course, no need to use a
closed tube; one can substitute a rod with a sight at each end (fig. 1.24), and
this form is more probable. No Greek dioptra has come down to us, but the
instrument is mentioned by a number of Greek writers.

Euclid, the geometer of the late fourth century B.c., mentions a dioptra
in his elementary astronomical treatise, the Phenomena. Aim, says Euclid, a
dioptra at the constellation Cancer while it is rising. Then turn around and
look through the other end of the instrument and you will see Capricornus
setting. Euclid’s suggested observation, if carried out, would show that Cancer
and Capricornus lie in diametrically opposite directions. (For Euclid’s use of
this fact, see sec. 2.4.)

Some version of the compound sighting tube was also developed in antiquity.
It is impossible to be certain of the details of construction because no such
ancient instrument survives and no extant Greek text provides an adequate
description. However, the following extract from Geminus leaves no doubt
that he was familiar with a version of the dioptra equivalent in principle to
the compound sighting tube of figure 1.23. Geminus was the author of an
elementary astronomy text, the Introduction to the Phenomena, written around
A.D. 50.

EXTRACT FROM GEMINUS
Introduction to the Phenomena, X11

The cosmos moves in a circular motion from east to west. For all the stars
that are observed in the east after sunset are observed, as the night advances,
rising always higher and higher; then they are seen at the meridian. As the
night advances, the same stars are observed declining towards the west; and
at last they are seen setting. And this happens every day to all the stars.
Thus, it is clear that the whole cosmos, in all its parts, moves from east to
west.

That it makes a circular motion is immediately clear from the fact that
all the stars rise from the same place and set in the same place [on the
horizon]. Moreover, all the stars observed through the dioptras are seen to
be making a circular motion during the whole rotation of the dioptras.”



The last quoted sentence clearly refers to an instrument more or less equivalent
to the compound sighting tube of figure 1.23.

If the compound sighting tube is fitted with protractors, it can be used to
measure angles. Indeed, Geminus remarks that a dioptra may be used to
divide the zodiac into twelve equal parts,”® which implies an instrument
equipped with some sort of angular scale. The compound sighting tube of
figure 1.23 is not suited to dividing the zodiac into equal parts (because of
the obliquity, or slantedness, of the zodiac with respect to the equator), but
a further modified dioptra might have done the job. However, by the time
of Ptolemy (second century A.p.), and perhaps by the time of Hipparchus
(second century B.C.), the dioptra was replaced by the armillary sphere as the
instrument of choice for measuring the positions of the stars. From then on,
the dioptra’s chief role in astronomy was that of a demonstration device or
teaching tool.

In surveying (as opposed to astronomy), the dioptra saw continued service.
It was elaborated into a faitly sophisticated surveyor’s instrument, analogous
to the modern theodolite. A water level was added to the stand and the
sighting tube {or rod equipped with sights) was fitted with a protractor so
that it could be used to measure angles, as for example the angular height of
a mountain summit. Such an elaborate dioptra was described by Hero of
Alexandria (first century A.D.), the Greek mechanician best known to most
modern readers for his invention of a primitive steam engine. It is doubtful
that Hero’s elaborate dioptra ever saw widespread use. However, it was the
logical culmination of the instrument that began four or five centuries eatlier
as a simple sighting tube.”

The name dioptra was also applied to another instrument, a kind of cross-
staff, that could be used to measure angular distances in the sky, such as the
angular diameters of the Sun and Moon. This kind of dioptra is described
by Prolemy in Almagest V, 14.

Is the Heaven or the Earth in Motion? An Ancient Debate

As far as practical astronomy is concerned, it makes no difference whether
the motion of the stars is explained by the westward rotation of the celestial
sphere or by the eastward rotation of the Earth on the same axis. Observations
of the heavenly bodies provide no basis for choosing. One may, however, still
ask which hypothesis is physically true. Although opinion in antiquity was
overwhelmingly in favor of a stationary Earth, there were thinkers who sub-
scribed to the opposite view."

Heraclides of Pontos  The earliest philosopher who unambiguously and unde-
niably taught the rotation of the Earth on its axis was Heraclides of Pontos
{ca. 350 B.c.). Heraclides came from the city of Heraclea Ponticus, on the
north shore of Asia Minor, the site of the modern Turkish city of Eregli.
While still a young man he went to Athens, where he became a pupil of Plato
and of Speusippus, Plato’s successor at the Academy. Speusippus died in 347
B.C. and his place as head of the Academy was taken by Xenocrates, at which
time Heraclides returned to his nartive city. None of Heraclides’ scientific
writings have come down to us. However, his opinion on the rotation of the
Earth is mentioned by two later writers, Aétius and Simplicius.

Aérius (ca. A.D. 100) was the author of a book called The Opinions of the
Philosophers, a guide to and history of Greek philosophy. Aétius’s handbook,
extant in part, is a valuable although often disappointing source of information
on the views of many writers whose works have been lost. Aérius, on the
question of the Earth’s rotation, has this to say:

Heraclides of Pontos and Ecphantus the Pythagorean move the Earth, not

however, in the sense of translation, but in the sense of rotation, like a
. . 4

wheel fixed on an axis, from west to east, about its own center.
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FIGURE 1.20. Oblique sphere: the sky as
viewed from latitude 48° N.
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FIGURE 1.21. A dioptra, or sighting tube.
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FIGURE 1.22. A star low in the east is sighted
through a dioptra (A). A short time later (B) the
star is seen to have moved out of the sighting
tube of the dioptra.
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FIGURE 1.23. A compound dioptra. Tube AB
is aimed at the celestial pole. Tube CD makes a
fixed angle o with AB. As the apparatus is

turned about axis AB in the course of the night,
the observer can keep star S in sight.

FIGURE 1.24. A simple dioptra consisting of a
stick with two sights.

This is as clear as one could wish. Ecphantus was a Greek who flourished
about 400 B.c. at Syracuse in Sicily. He was perhaps a disciple of Hicetas of
Syracuse, whose name has also been associated with the doctrine of the Earth’s
rotation. Hicetas and Ecphantus predate Heraclides; however, little is known
of them.

The second attestation to Heraclides” opinion on the subject is provided
by Simplicius, who in the sixth century A.p. wrote commentaries on the works
of Aristotle. In his commentaries, Simplicius explicated difficult passages in
Aristotle and sometimes supplied quotations from other writers, to compare
their opinions with those of Aristotle. Simplicius was an excellent scholar and
had read widely. His commentaries remain an important source of information
on the interpretation of Aristotle’s works in antiquity, and on the views of
other writers, which are in many cases known to us only because Simplicius
happened to mention them. In the course of his commentary on Aristotle’s
On the Heavens, Simplicius mentions Heraclides on the Earth’s rotation:

there have been some, like Heraclides of Pontos and Aristarchus, who
supposed that the phenomena can be saved if the heaven and the stars are
at rest, while the Earth moves about the poles of the equinoctial circle [i.e.,
the equator] from the west [to the east], completing one revolution each

day. ...
Further along, Simplicius provides a second allusion to the same fact:

But Heraclides of Pontos, by supposing that the Earth is in the center,

and rotates, while the heaven is at rest, thought in this way to save the
2

phenomena.

Aristarchus of Samos, mentioned by Simplicius in the first of these passages,
flourished in the third century B.c., about two generations after Heraclides.
He is known to have espoused a dual motion of the Earth: an annual revolution
of the Earth about the Sun and a simultaneous rotation of the Earth on its
axis. None of his writings on this subject have survived. (We do have, however,
his treatise On the Sizes and Distances of the Sun and Moon, which is discussed
in sec. 1.17.)

As we have seen, there were a handful of thinkers in antiquity who asserted
that the heaven was stationary and that the Earth rotated. However, none of
the original writings have come down to us. Agtius lived some 450 years after
Heraclides, and Simplicius nearly 9oo years after Heraclides. It is clear that
by their time the original writings of Heraclides had been lost and that they
were forced to rely on summaries and quotations made by other writers. In
the study of the early Greek philosophers and scientists, this is far from being
an unusual situation. In the case of major figures, such as Plato in philosophy
and Euclid in mathematics, we have lengthy works, preserved in the whole.
But in the case of many minor writers we often have only quotations or brief
mentions provided by later writers. It may seem curious that the original
writings espousing such a remarkable view should not have been preserved.
But, in fact, once the rotation of the Earth has been asserted, and a few
justificatory physical arguments made, there is little more to be said. It is
unlikely that Heraclides’ remarks on this subject were of any substantial length.

Abristotle on the Five Elements and Their Natural Motions Many ancient writers
who asserted that the Earth is stationary made an effort to support their claim.
Because astronomical evidence does not bear on the case, the argument had
to be physical in nature, that is, based on the physics or nature of the world.
Aristotle (382—322 B.C.) was the most influential physical thinker of the classical
age. His doctrines on the nature of the world were part of the mental furniture
of every later Greek astronomer. Not everyone agreed with Aristotle on every



detail, but everyone knew more or less what he had said about the nature of
the cosmos.

According to Aristotle, the portion of the cosmos lower than the Moon is
made up of four elements: earth, water, air, and fire. All the changes that we
observe around us, the coming into being and the passing away of material
objects, result from the combinations and transformations of these elements.
But the celestial bodies are made of a fifth element, the ether, which is
completely different in nature. It is simple and pure, and therefore incapable
of any change. This is why the heavens have remained changeless for many
generations.

In his theory of motion, Aristotle distinguishes between narural and forced
(also called wiolent) motions. For each of the sublunar elements, the natural
motion is radial motion toward or away from the center of the cosmos, in
accordance with their relative heaviness or lightness. For earth, the natural
motion is radially downward toward the center of the universe, as may be
seen by dropping any particle of earth. A piece of earth may, of course, be
given a motion that is contrary to its natural motion. It may be hurled
horizontally, or even straight upward. But such forced motions do not endure:
the particle eventually reverts to its natural, downward motion. In the case
of fire, an element lighter than earth, the natural motion is straight up, radially
away from the center. These doctrines are in keeping with a commonsense
view of the world.

In the case of the fifth element, the ether, the natural motion is everlasting
motion in circles about the center of the universe. This, too, anyone can see,
simply by watching the nightly motion of the stars. The ether must also be
extremely rare (i.e., not dense), since it lies above the four heavier elements
of the sublunar world.

Aristotle’s theory of the elements and of natural motions explains why the
Earth is at the center of the cosmos: all the individual particles of earth strive
to reach the center. It also explains why the Earth is a sphere: the center-
secking jostling of the individual particles necessarily results in this shape.
Thus, the theory has a good deal of explanatory power.

The theory is also very unfavorable to the motion of the Earth. But let us
suppose, nevertheless, that the Earth does move—either traveling from place
to place or remaining in place and rotating on its axis. Such motion must be
forced. For the natural motion of earth is in a straight line toward the center.
The motion, therefore, being forced and not natural, would not endure. But
the observed motion of the heavens is everlasting. So it is clear that the
apparent rotation of the heavens cannot be due to a rotation of the Earth.”

Ptolemy on the Diurnal Rotation Ptolemy was a Greek scientific writer who
lived from abour A.D. 100 to about 175. He worked at Alexandria, the intellec-
tual center of the eastern Mediterranean and the site of the finest library in
the ancient world. As is so often the case with the scientific figures of antiquity,
as opposed to politicians and military men, virtually nothing is known of his
life. Other scientists, both before and after his time, worked at the Alexandria
Museum, either as scholars or as teachers, and received stipends from this state-
supported institution. It is possible that Ptolemy had a similar appointment,
although such a connection is nowhere attested. Some of his works are ad-
dressed to a certain Syrus. Whether this was a friend, colleague, or patron is
not known. Ptolemy was a brilliant applied mathematician and a prodigious
worker. He produced important treatises on geography and optics, as well as
a highly influential handbook of astrology. But his reputation rests chiefly on
his astronomical treatise, the Almagest.

The beginning chapters of the Almagest are devoted to the basic premises
of astronomy. Among these are the immobility of the Earth. In the following
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extract, Prolemy notes that “certain people” have argued for the rotation of
the Earth. Here he may be thinking of Heraclides of Pontos and Aristarchus
of Samos. Ptolemy concedes that it is impossible to refute such a theory with
astronomical evidence. He therefore brings to bear physical arguments, based
on Aristotle’s doctrine of natural motions. He argues, too, that if the Earth
did turn, loose objects on its surface would be left behind, thus elaborating
on an argument that had been suggested by Aristotle.

EXTRACT FROM PTOLEMY
Almagest 1, 7

Certain people . . . think that there would be no evidence to oppose their
view if, for instance, they supposed the heavens to remain motionless, and
the Earth to revolve from west to east about the same axis, [as the heavens)
making approximately one revolution each day; or if they made both heaven
and Earth move by any amount whatever, provided, as we said, it is about
the same axis, and in such a way as to preserve the overtaking of one by
the other. However, they do not realize that, although there is perhaps
nothing in the celestial phenomena which would count against that hypothe-
sis, at least from simpler considerations, nevertheless from what would occur
here on Earth and in the air, one can see that such a notion is quite
ridiculous.

Let us concede to them [for the sake of argument] that such an unnatural
thing could happen as that the most rare and light of matter should either
not move at all or should move in a way no different from that of matter
with the opposite nature (although things in the air, which are less rare
(than the heavens] so obviously move with a more rapid motion than any
Earthy object); [let us concede thar] the densest and heaviest objects have a
proper motion of the quick and uniform kind which they suppose (although,
again, as all agree, Farthy objects are sometimes not readily moved even
by an external force). Nevertheless, they would have to admit that the
revolving motion of the Earth must be the most violent of all motions
associated with it, seeing that it makes one revolution in such a short time;
the result would be that all objects not actually standing on the Earth would
appear to have the same motion, opposite to that of the Earth: neither
clouds nor other flying or thrown objects would ever be seen moving
towards the east, since the Earth’s motion towards the east would always
outrun and overtake them, so that all other objects would seem to move
in the direction of the west and the rear.

But if they said that the air is carried around in the same direction and
with the same speed as the Earth, the compound objects in the air would
none the less always seem to be left behind by the motion of both [Earth
and air]; or if those objects too were carried around, fused, as it were, to
the air, then they would never appear to have any motion either in advance
or rearwards; they would always appear still, neither wandering about nor
changing position, whether they were flying or thrown objects. Yet we quite
plainly see that they do undergo all these kinds of motion, in such a way
that they are not even slowed down or speeded up at all by any motion
of the Earch.

Prolemy’s physical arguments were not satisfactorily answered until the
principle of inertia was understood, in the seventeenth century. The important
point to be noted is that the Greek astronomers were sophisticated enough
to realize that the daily motion of the heavens could be explained by a
rotation of the Earth and char this view could not be refuted by astronomical
observation. Nevertheless, the prevailing view was that the Earth was at rest
and that the heavens really did revolve from west to east, exactly as they
appeared to do.



I.7 OBSERVATION: THE DIURNAL MOTION
OF THE STARS

Contrive a few sighting tubes—four is an optimal number. Direct one tube
toward a star that is rising in the east, one toward a star that is crossing the
meridian in the south, and one toward a star that is setting in the west. The
fourth sighting tube should be aimed at Polaris. After the tubes are set, pass
half an hour reviewing the constellations. Then return to the sighting tubes
to note the directions in which the first three stars have moved. As for Polaris,
you will find that it has not moved perceptibly and that it remains in its
sighting tube. These simple observations will reveal in a clear and immediate
way the rotation of the celestial sphere.

1.8 STARS AND CONSTELLATIONS

The history of the nomenclature for the stars and constellations is complex,
involving Babylonian, Greek, Arabic, and medieval Latin traditions. In many
details, this history is imperfectly known. Devising constellations and naming
stars are not, of course, scientific activities. But every culture in which a
scientific astronomy developed did devote some effort to organizing the heaven
into constellations. Perhaps this was a psychological prerequiste for scientific
astronomy. And, of course, the zodiacal constellations provided a system of
reference marks vital for the early investigations of the motions of the Moon
and planets.

Constellations

Most of the familiar constellations have rraditions going back ro the Greeks.
In some cases, the names are very ancient, being found in Homer and Hesiod
(ca. 700 B.C.) and going back, no doubt, beyond the beginning of Greek
literarure. As we saw in section 1.1, Homer and Hesiod mention Orion, the
Pleiades, the Hyades, the Bear, and Bobtes.

While many of the constellations are undoubtedly of Greek origin, others
are Hellenized versions of even older Babylonian constellations. This is par-
ticularly true of the zodiacal constellations. For example, the Babylonian
GU.AN.NA, or “Bull of Heaven,” corresponds to our Taurus. MAS. TAB.BA.
GAL.GAL, “the Great Twins,” is our Gemini, and so on. Figure 1.25 presents
striking evidence of the dependence of the Greek zodiac on the Babylonian
tradition. On the left are the figures of three zodiacal constellations as repre-
sented on Babylonian boundary stones of the Kassite period. (Boundary stones
were used for marking out parcels of land.) On the right are the same three
constellations as figured on the famous “round zodiac” from the ceiling of a
temple in Dendera, Egypt. (The round zodiac is now in the Louvre in Paris.)
The Egyptian figures are from the Roman period and show an incorporation
of Egyptian design elements with the classical Greek imagery for these constel-
lations. The resemblance between the Greco-Egyptian figures and the Babylo-
nian prototypes is remarkable, extending even to such details as the positions
of the forelegs of the goat-fish creature, Capricornus. The Greeks did, however,
redesign some of the zodiacal constellations. For example, where the Greeks
recognized Aries, a ram, the Babylonians saw a hired laborer.”

Among the Babylonians, the twelve-constellation zodiac emerged sometime
after 900 B.C., though some of the individual constellations are considerably
older. The artificial zodiacal signs, all of 30° length, were in use in Babylonia
by end of the sixth century B.c. There is no solid evidence for a complete
zodiac among the Greeks until the fifth century, when it was taken over
virtually whole from the Babylonians. The earliest Greek parapegmata (star
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FIGURE 1.25. Zodiac figures in
Babylonian (left) and Greco-Egyptian
(right) styles. The Babylonian figures

are from boundary stones of the Kassite
period, circa 1200 B.c. The Greco-
Egyptian figures are from the round
zodiac of Dendera, circa A.D. 25.

From top to bottom, the constellations
represented are Sagittarius, Capricornus,
and Aquarius. From Hinke (1907).

calendars, based on a division of the year into zodiacal signs) were those of
Meton, Euctemon, and Democritus, all of the late fifth century B.c.

By the middle of the fourth century B.c., the Greek constellations were
substantially complete. Eudoxus’s description of the constellations probably
played a great role in standardizing the Greek nomenclature. This description
has not come down to us, but its essential content is preserved in Aratus’s
verse Phenomena (ca. 270 B.C.), the oldest surviving systematic account of the
constellations in Greek. Aratus describes the whole celestial sphere and tells
how the constellations are placed with respect to one another. But he does not
give any details about the positions of individual stars within the constellations.
Eudoxus had undoubtedly given more detail, but numerical data about individ-
ual star positions were rightly deemed unsuitable by Aratus for his poem. Some



additional insights into Eudoxus’s intentions are furnished by Hipparchus’s
Commentary on Aratus and Eudoxus (ca. 150 B.C.).

Another source of some value is the Catasterisms (“Constellations”) of
Eratosthenes.” This brief tract was written as a commentary on, and supple-
ment to, the Phenomena of Aratus, as is evident from the fact that the constella-
tions are treated in the same order in the two works. The work is basically a
list of constellations, with a story or legend for each. Here is the entry for
Cassiopeia:

Sophocles, the tragic poet, says in his Andromeda that this one [Cassiopeia]
came to misfortune by contending with the Nereids over beauty, and that
Poseidon destroyed the region by sending a sea-monster [Cetus]. This is
why her daughter [Andromeda] appropriately lies before the sea-monster.
She has a bright star on the head, a dim one on the right elbow, one on
the hand, one on the knee, one at the end of the foot, a dim one on the
breast, a bright one on the left thigh, a bright one on the knee, one on
the board, one at each angle of the seat on which she sits; in all, thirteen.

The legends of the origins of the constellations are what made the Cataster-
isms popular and guaranteed its survival. However, the Casmsterisms does
provide some genuine astronomical information, notably the mentions of how
many stars are contained in each part of each constellation. This information
would help a reader work out the figure of the constellation in the night sky.
Aratus had provided no such detail (though Eudoxus probably had). We may
regard Aratus’s Phenomena and the Catasterisms of Eratosthenes as continua-
tions and elaborations of the description of the celestial sphere set down by
Eudoxus.

After Eudoxus’s time, there were only a few new constellations added by
later Greek astronomers, notable examples being Coma Berenices and Equu-
leus. The story of Coma Berenices is especially interesting. This constellation
was invented by the Alexandrian astronomer Conon, and the story goes like
this: Berenice was the cousin and wife of Ptolemaios III Euergetes, the third
of the Macedonian kings of Egypt. (Ptolemy Euergetes ruled from 247 to 222
B.C.). When her husband departed for war in Syria, Berenice vowed to make
an offering to the gods of a lock of her hair if he should return safely. When
her husband did, indeed, return safely to Alexandria, she cut off a lock and
placed it in a temple, from which it mysteriously disappeared. Conon, the
court astronomer, consoled her by designating a new constellation Coma
Berenices, the Hair of Berenice. The story has come down to us because it
inspired Callimachus of Cyrene, who also worked at Alexandria at this time,
to compose a poem on the subject, which survives in a fragmentary state.”
A Latin version made two centuries later by Catullus has come down to us
intact.”® The new constellation had an unsettled history: although it appears
in the Catasterisms of Eratosthenes (in the paragraph on the Lion), it was
not included by Prolemy among his forty-eight constellations. Ptolemy does,
however, allude to the “lock” of hair in his star catalog, in his description of
the unconstellated stars around Leo (Almagest VII, s).

Coma Berenices, although not recognized as an independent constellation
by Ptolemy, eventually won a permanent place on the sphere. Other proposed
constellations, including some invented by Hipparchus, never won acceptance
and have vanished from the sky. Ptolemy followed Hipparchus in recognizing
Equuleus as a new constellation, but did not accept Hipparchus’s Thyrsus-
lance (held by the Centaur) as an independent constellation.”” Even in the
case of the old, standard constellations, there were differences among individual
writers over the number of stars included in each and the manner in which
one should “connect the dots” to form the figure. Prolemy (A/magest VI,
4) mentions that he has departed from Hipparchus’s forms to give better-
proportioned figures. For example, the star Hamal (00 Arietis) was said by
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Hipparchus to be on the muzzle of the Ram, Aries, but Ptolemy placed this
star outside of the constellation, above the head. Some stars that had been
placed by Hipparchus on the shoulders of Virgo, Ptolemy described as “on
her sides.” It was Prolemy’s star catalog in books VII and VIII of the Almagest
that did the most (after the Phenomena of Eudoxus and Aratus) to fix the
names and figures of the classical forty-eight constellations. From Ptolemy’s
time, then, the basic forms of the constellations were settled.

Our modern astronomical tradition is not directly continuous with that
of the ancient Greeks but is separated from it by the medieval period when,
in Europe, Latin was the language of learning. Thus, the modern names of
many constellations are Latin renderings of the Greek names. For example,
Gemini is a literal translation of the Greek Didymoi, “Twins.” There are many
other examples: Latin Cancer for the Greek Karkinos, “Crab”; Aries for Krios,
“Ram.” In some cases the Latin words are etymologically the same as the
Greek: Latin Taurus = Greek Tauros, “Bull”; Latin Leo = Greek Leon, “Lion.”

During the Age of Exploration (fifteenth and sixteenth centuries), European
navigators saw for the first time the stars around the south celestial pole. This
was a new period of constellation making. Some of the new constellations (e.g.,
Tucana, a toucan) reflect the exotic animals encountered by the Europeans in
tropical lands. In the cighteenth century, a deliberate effort was made to
fill in the gaps between the classical constellations. Some of the smaller,
inconspicuous constellations date from this period, for example, Microscopium
and Telescopium, both devised by the French astronomer Nicolas Louis de

La Caille.”

Stars

The Greek astronomical writers did not assign proper names to many individ-
ual stars. Most stars were identified simply by descriptions of their places
within the constellations. Our Betelgeuse (o0 Ori), for example, was simply
the “star on the right shoulder of Orion.” Most of the stars with real names
were deemed to be significant either as weather signs or as indicators of the
season. For the Greeks, the most important named stars were

Arcturus

Sirius (Also called Kyon, “dog.”)

Procyon

Antares

Canopus

Aix (Now called Capella, a Latin translation of the Greek, “goat.”)

Lyra (The “lyre.” Now called Vega, a medieval Latin corruption of an
Arabic form. The Greeks also applied Lyra to the whole constellation
of which this star is the brightest member. This designation still
stands.)

Aétos (The “eagle.” Now Altair, from the Arabic.)

Stachys (Now Spica, a Latin translation of the Greek name, “ear of
wheat.”)

Basiliskos (Now Regulus, a Latin rendering of the Greek, the “little
king.” For the Babylonians, this star was also called “king,” LUGAL.)

The Pleiades

Protrygeter (Now Vindemiarrix, the Greek and Latin both signifying
“harbinger of the grape harvest.”)

Eriphoi (The “kids.” These are the two dim stars N and { Aurigae.)

Onoi (The “asses,” ¥ and & Cancri.)

This list nearly exhausts the individual star names used by the early Greeks.
Some of the names are truly ancient: Arcturus, Sirius, and the Pleiades are
all mentioned by Hesiod. The others are first attested somewhat Jater.



The first ten stars of the list are quite bright; their prominence in the night
sky no doubt justified individual names. The last four items listed contain
rather dim objects. They earned their names not by their brightness but by
their significance. As we saw in section 1.1, the morning setting of the Pleiades
signaled the beginning of winter weather and the time to sow grain (Novem-
ber). The morning rising of the Pleiades was the signal of the wheat harvest,
in May. Similarly, the morning rising of Vindemiatrix, in September, signaled
the coming of the grape harvest. And the morning setting of the Kids, in
December, signaled the onset of the season of winter storms, as in these lines
by Callimachus:

Flee the company of the sea,
O mariner, when the Kids are 5ettz'ng.51

Arcturus and Sirius played roles only a little less important than that of
the Pleiades. The morning rising of Arcturus was a sign of autumn, while the
morning rising of Sirius, the Dog Star, signaled the hot days of high summer
(the “dog days”). The calendrical significance of the Pleiades, Arcturus, and
Sirius probably accounts for the fact that these are the first stars to be mentioned
by name in Greek literature.

Concerning the Asses: between these two stars is a small, fuzzy or nebulous
patch. Through binoculars it is resolved into a tight cluster of stars, now
popularly known as the Beehive. The Greeks called it a Manger (Phame).
According to Aratus, the visual appearance of the Asses and the Manger
through thin clouds at night can be used to predict the weather:

If the Manger darkens and both stars remain unaltered, they herald rain.
But if the Ass to the north of the Manger shines feebly through a faint
mist, while the southern Ass is gleaming bright, expect wind from the
south. But if in turn the southern Ass is cloudy and the northern bright,
watch for the north wind.”

In the star catalog in Prolemy’s A/magest, more than a 1,000 stars are listed
together with their coordinates and magnitudes, but no more than a dozen
are given proper names. The remainder are identified in terms of their places
within the constellations. Some stars, which did not fit very well into the
figure of a traditional constellation, were said to be outside the constellation,
but their positions were nevertheless described in terms of relationships to
the constellated stars. It is still possible today to identify with absolute certainty
the great bulk of Ptolemy’s 1,000 stars. The identities of about ten percent
of the stars are, however, not quite certain (and a few are completely uncertain)
because of errors in Prolemy’s measured coordinates and lack of precision in
the written descriptions.

The revival of astronomy in western Europe began in the twelfth century.
The first stage in this revival required the study of the classics of ancient
Greek astronomy. At first, translations were made into Latin from Arabic
translations of the Greek originals. A number of Arabic treatises in astronomy
and mathematics were also translated into Latin. Only somewhat later were
the important Greek works translated into Latin directly from the Greek. Not
surprisingly, a good deal of Arabic star nomenclature found its way into
medieval and Renaissance Latin astronomy. In fact, the great majority of
modern star names in the European languages are corrupt forms of the Arabic
names. In some cases, the Arabic name descends from a tradition independent
of the Greek. But in many cases, the Arabic name that lies behind the
modern European name is merely a translation of the original Greek descriptive
nomenclature. For example, our Vega is a corrupt form of the Arabic [a/-
nasr] al-wiqi®, “the swooping [vulture],” which has no counterpart in the
ancient Greek nomenclature. But our Denebola is a corrupt form of the
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P Arabic dbanab al-asad, “the tail of the Lion,” which was just the way the

¢ /{\ Greeks referred to this star.
. G One of the most important Arabic works on the stars was that of Abu®l-
fo b A i Husayn “Abd al-Rahman Ibn “Umar al-Razi al-Safi. Around a.p. 964, al-Safi
é“t B - composed his Book on the Constellations of the Fixed Stars (Kitdbh suwar al-
[ ST ‘g kawakib al-thibita).” The core of al-Saf’s book is Prolemy’s star catalog from
; ? ' the Almagest. Al-Sufi translated the Greek descriprive nomenclarure into Arabic
¢ 6 4 \ and updated the positions of the stars by adding 12°42" to all of the longitudes
: ! Y to account for the precession between Prolemy’s day and his own. Bur al-
e L ralg 3 Suft also added a paragraph of notes for each constellation, in which he
* /% 15!» discussed problems of identification, errors in Prolemy’s coordinates, and
Al . variants for the names for individual stars, including old Arabic star names
G e S that predated Arab contact with Greek astronomy. Al-Saff’s work, in the
. earliest extant manuscripts, is also notable for its drawings of the figures of
f iyl S s the constellations. In fact, al-Safi included two drawings for each constellarion:
one as seen in the sky, and one reversed (as seen on a solid globe). The stars
of each constellation were numbered on the charts and thereby keyed to the

-t

list of stars in the catalog. In figure 1.26 we see the constellation of Taurus,
the Bull, in a medieval Arabic manuscript of al-Safr’s work. The Bull, here
drawn in a fluid Arabic style, was a Greek constellation, of course. Bur long
before that, it was a Babylonian constellation—a facr that was certainly unknown
to al-Sufi. Here we see one more dramatic illustration of the continuity (and
complexity) of the nomenclarure for the stars and constellations from the Babylo-
nians, through the Greeks and Romans, through the Arabic and Latin astrono-
mers of the Middle Ages, and down to our own day.

Modern astronomers frequently identify stars by means of Bayer letters,
introduced by the German astronomer Johann Bayer in his influential celestial

2 : ".‘;5,‘3’ - atlas, Uranometria, published in 1603. In this system, each star is labeled by
,’LJ . ,"' a Greek letter and the Latin name (in the genitive case) of the constellation
e E-" Qi in which it is found. Thus, the stars Betelgeuse and Rigel (both in Orion)
. . S ey : . . o .
b 7 E‘:{.) > . iw are called, respectively, ot Orionis and B Orionis. Bu, as few twentieth-century
&' 5 ® astronomers have any Larin, a simplified system has recently arisen of using
[ 38 2> a three-lecter abbreviation of the constellation name: ¢ Ori and § Ori.
3 L \ : 1.9 EARTH, SUN, AND MOON
5% 3™ '
A good deal of astronomy rests on an understanding of the Earth-Sun-Moon
i | - system. The fundamental questions are three: What causes the phases of the
!. E Moon? What causes eclipses? Whar is the shape of the Earth?

FIGURE 1.26. The constellation Taurus accord-
ing to al-Saff. On the top is Taurus as seen in Phases of the Moon

the sky. Below this is Taurus as represented on . . . . .
a solid celestial globe. The five stars forming a The Moon shines by reflected sunlight. Half the Moon is always illuminated—

V on the Bull’s face are the Hyades. The cluster the half that faces toward the Sun. As the Moon orbits the Earth in the course

of four stars on the hump of the Bull’s back are ~ ©f the month, we see it from different angles. Refer to figure 1.27.

the Pleiades. Each star has been numbered to

key the figure to the star list that accompanies

it. The figures are photographs of a fourteenth-

century Arabic manuscript copy of al-Saff’s

Book on the Constellations of the Fixed Stars.

By permission of the Trustees of the British When the Moon is at position 2, we can just see a sliver of a crescent.

Library (Or. 5323, fols. 38, 39). This is what the Greeks called new Moon. The Greek new Moon came a
day or two after the true conjunction.

When the Moon is at position 1, the unilluminated half faces us and we
cannot see the Moon at all. This is what we call new Moon. The Moon
is also said to be in conjunction with the Sun, because they both lie in the
same direction as seen from Earth.

At position 3, the Moon reaches first quarter. We can see half of the
illuminated portion. In the sky, the Moon looks like the letter D.



At position 4, the Moon is gibbous, or “hump-backed” in shape.

At position 5, the illuminated hemisphere of the Moon directly faces us,
and the Moon is full. The Moon is also said to be in opposition to the
Sun.

At position 6, the Moon is gibbous again.

At position 7, the Moon reaches third quarter. In the sky, it looks like a
backward letter D.

At position 8, the Moon is again a crescent.

From positions 1 to 5 the Moon is said to be waxing, that is, growing
larger. From positions 5 to 1 the Moon is said to waning, that is, growing
smaller.

A surprisingly large number of people today believe that the phases of the
Moon are due to the “shadow of the Earth.” This is clearly not the case. For
example, at the time of the first quarter, we can see the Sun and the Moon
in the sky at the same time. Thus, the Farth cannot be between the Sun and
the Moon, casting a shadow on the Moon. Phases and eclipses are due to
different causes.

Eclipses

There are two kinds of eclipses, unar and solar. Solar eclipses can occur only
at the time of new Moon (position 1 in fig. 1.27). The Moon passes across
the face of the Sun and blocks it out.

Lunar eclipses can occur only at full Moon (position 5 in fig. 1.27; see also
Fig. 1.28). The Earth casts a long, cone-shaped shadow that stretches out in
space diametrically opposite the Sun. At the time of lunar eclipse, the Moon
passes through the Earth’s shadow.

Although eclipses of the Moon are possible only at full Moon, a lunar
eclipse does not occur every full Moon. The Moon’s orbit is tilted a littde
(about 5°) with respect to the plane of the ecliptic (plane of the Sun’s orbit
about the Earth). Thus, most months, at the time of full Moon, the Moon
misses the Earth’s shadow by crossing either a little north or a little south of
it. Thus, in figure 1.27, the Moon should be regarded as spending most of
its time either a little above or a little below the plane of the paper.

The Explanation of Phases and Eclipses

Parmenides of Elea (late sixth century B.c.) described the Moon in his poem
as “a night-shining foreign light wandering around the Earth.” In another
line, Parmenides characterized the Moon as “always fixing its gaze on the
beams of the Sun.”* Some have seen in these lines a realization that the Moon
shines by reflected sunlight. The second line does reveal an awareness that
the bright portion of the Moon always faces toward the Sun. But this does
not necessarily imply an understanding of the physical cause of the Moon’s
brightness.

One can know that the brighe side of the Moon always faces the Sun
without realizing that the Moon shines by reflected sunlight. This is abundantly
clear in the “explanation” of the Moon’s phases attributed by Vitruvius to
Berosus. According to this view, the Moon is a ball, one half luminous and
the other half of a blue color. The luminous half of the Moon always turns
to face the Sun, attracted by its rays and great heat, in keeping with the
sympathy between light and light. As the Moon travels through the zodiac,
it gradually turns so that the luminous portion may always face the Sun. And
thus we see different portions of it as the month goes by.” Berosus was a
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Light from Sun

FIGURE 1.27. The phases of the Moon are due
to the fact that an observer on the Eatth sees dif-
ferent portions of the illuminated half of the
Moon at differenc times of the month.

FIGURE 1.28. The Moon M entering the
shadow of the Earch E, thus ptoducing a lunar
eclipse.
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Chaldaean, that is, a Babylonian astronomer and astrologer, who flourished
around 300 B.c. His works were known to later Greek and Roman writers,
who preserved some fragments of them. According to Vitruvius,” Berosus
settled on the island of Cos, where he opened a school and introduced the
Greeks to astrology. It is clear that Berosus did play some role in the diffusion
of Babylonian astronomical knowledge among the Greeks. It is not, however,
safe to ascribe Berosus’s theory of the Moon’s phases to early Babylonian
astronomy: we simply do not know what explanation, if any, the early Babylo-
nians offered for the phases. From the point of view of Babylonian astronomy,
Berosus is rather late. Living among the Greeks, he may well have been
influenced by the Greek desire for a physical explanation. If so, his view must
have had little appeal, for among the Greeks the correct explanations of phases
and eclipses were already several generations old.

Anaxagoras in Athens  Most of the Greek testimony attributes the discovery
of the causes of the Moon’s phases and eclipses to Anaxagoras of Clazomenae
on the west coast of Asia Minor (just west of the modern Turkish city of
Izmir). Around 480 B.C., Anaxagoras went to Athens, where he was befriended,
and perhaps financially supported, by Pericles, the political leader of the
democratic element in the city.

Anaxagoras correctly explained the phases of the Moon, saying that the
Moon gets its light from the Sun. We have early testimony on this point.
Plato mentions it as a “recent discovery” of Anaxagoras “that the Moon receives
its light from the Sun.””

Later writers, including Hippolytus and Agtius, say that Anaxagoras ex-
plained eclipses of the Sun by the interposition of the Moon between the
Sun and the Earth, and eclipses of the Moon by the Moon’s falling into the
Earth’s shadow. He held, too, that the Sun was larger than it appeared, that
it was, indeed, “larger than the Peloponnesos.”58

Anaxagoras is also noteworthy for his attempt to unify terrestrial physics
with the physics of the heavens. In opposition to prevailing thought, he held
that the celestial bodies were made of ordinary, earthy matter. He said that
the Moon has plains and ravines. Perhaps inspired by the fall of a meteorite,
he called the Sun a red-hot stone. These and other remarks were offensive to
the religious conservatives of Athens, who believed that the Sun and Moon
were gods or else were directly controlled by gods. Anaxagoras was accused
of impiety and tried on that charge, among others. While there is no doubt
that his views were genuinely shocking to some, the case was also used by
the political conservatives as a way of discrediting Pericles. The ancient ac-
counts vary: either Anaxagoras was tried and condemned to death in absentia,
or he was, after efforts on his behalf by Pericles, merely fined and exiled. In
any case, he withdrew to Lampsacus, in northwest Asia Minor, where he
remained until his death around 427 B.c. The Lampsacans are said to have
treated him with honor. When the rulers of the city asked him what priviledge
he wished to be granted, he replied that after his death the school children
should each year be given a holiday in his memory. The custom was long
observed.”

Curiously, Anaxagoras does not appear to have pursued his astronomical
ideas to their ultimate conclusion. Although he correctly explained lunar
eclipses, he is said nevertheless to have maintained that the Earth is flat. He
held, too, that the Moon is eclipsed not only by the Earth but sometimes
also by other, unspecified bodies lying below the Moon. Thus, it appears that
by about 480 B.c. the correct explanation of lunar eclipses was already current,
but that this knowledge had not yet been brought to bear on the question of
the Earth’s shape. These related facts had not yet been integrated into a
coherent world view.



The Shape of the Earth

Early Doctrines  Among the earlier philosophers, there were some who asserted
that the Earth is flat or disk shaped. Moreover, in the early period there was
a tendency to confound the question of the Earth’s shape with the question
of its support, that is, why it remained in place. Thus, Thales of Miletus
(ca. 585 B.c.) declared that the Earth rests on water. His supposed student,
Anaximander (ca. 570 B.C.), held the Earth to be a cylinder whose depth was
one-third of its breadth. Of the two flat surfaces, one is that on which we
stand and the other is opposite. According to Anaximander, the Earth is
poised in emptiness, supported by nothing, and remains where it is because
it is equidistant from all other things. It has therefore no predisposition to
fly away in any one direction rather than in any other. Anaximenes of Miletus
(ca. 540 B.C.) held the Earth to be broad and flat and supported by the air
beneath it. Xenophanes of Colophon (ca. 530 B.C.) neatly disposed of the
question of what supports the Earth by declaring that the Earth has its roots
in infinity; that is, that the Earth reaches down forever. The cosmological
doctrines of the earliest philosophers are difficult to reconstruct with certainty.
For the most part, they are known only through citations and quotations by
later Greek writers.”

Some of the Greeks attributed the discovery of the sphericity of the Earth
to Parmenides (ffth century B.c.), while others gave the honor to Pythagoras
(sixth century B.C.). Still others claimed, quite impossibly, that this fact had
been known even to Hesiod (seventh century B.c.)." The statements by
later Greek writers merely reflect the Greek propensity for attributing every
discovery to one or another of their ancient wise men. That the idea of the
sphericity of the Earth originated with the Pythagorean school of the fifth
century is not, however, wholly improbable.

Aristotle on the Sphericity of Farth The earliest writer whose work survives,
who states clearly that the Earth is a sphere, and who gives adequate proof
of this fact, is Aristotle, who addresses the issue in his treatise On the Heavens
(fourth century B.c.). After refuting those who believe the Earth to be flat or
drum shaped, Aristotle asserts that it is a sphere. Moreover, this spherical
shape results from the natural tendency of the heavy elements to move toward
the center of the universe. Thus, it is the center-seeking pressure and jostling
of the separate particles of earth that brings about the spherical shape of the
whole. In this way Aristotle deduces the spherical shape of the Earth from
his physical doctrines. Note that in Aristotle’s physics, the Earth is not the
center of the universe, properly speaking. Rather, the Earth lies at the center
of the universe because of the center-seeking nature of the heavy element of
which it is composed. One physical principle thus explains not only the Earth’s
shape but also its position and its immobility.

Aristotle usually preferred an argument from physical or philosophical
principles over an argument from observation. Having given first what he
regarded as his best argument, he did not, however, refrain from marshaling
the evidence of the senses. In the following extract, Aristotle presents three
arguments in favor of the sphericity of the Earth.

EXTRACT FROM ARISTOTLE
On the Heavens 11, 14

Further proof is obtained from the evidence of the senses. If the Earth were
not spherical, eclipses of the Moon would not exhibit segments of the shape
which they do. As it is, in its monthly phases the Moon takes on all varieties
of shapes—straight-edged, gibbous and concave—but in eclipses the bound-
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ary is always convex. Thus, if the eclipses are due to the interposition of
the Farth, the shape must be caused by its circumference, and the Earth
must be spherical.

Observation of the stars also shows not only that the Earth is spherical
but that it is of no great size, since a small change of position on our part
southward or northward visibly alters the circle of the horizon, so that the
stars overhead change their position considerably, and we do not see the
same stars as we move to the North or South. Certain stars are seen in
Egypt and the neighbourhood of Cyprus, which are invisible in more
northerly lands, and stars which are continously visible in the northern
countries are observed to set in the others. This proves both that the Earth
is spherical and that its periphery is not large, for otherwise such a small
change of position could not have had such an immediate effort.

For this reason those who imagine that the region around the Pillars of
Heracles joins on to the regions of India, and that in this way the ocean
is one, are not, it would seem, suggesting anything utterly incredible. They
produce also in support of their contention the fact that elephants are a
species found at the extremities of both lands, arguing that this phenomenon
at the extremes is due to communication between the two. Mathematicians
who try to calculate the circumference put it at 400,000 stades.

From these arguments we must conclude not only that the Earth’s mass
is spherical but also that it is not large in comparison with the size of the
FIGURE 1.29. The lunar eclipse of July 16, other stars.”

1981, photographed in Seattle by Brian Popp.

The argument based on lunar eclipses is clear and convincing. The curved
edge of the shadow may be seen on the face of the Moon, as in figure 1.29.

Aristotle’s second group of arguments from sense evidence is based on
observations of the stars. Aristotle does not mention particular stars, or
any particular observations. In a philosphical work, particular astronomical
observations would have been deemed out of place. The almost complete
absence of specific observations is characteristic of most Greek astronom-
ical writing at the elernentary level—just as it is characteristic of elementary
textbooks in our own day. Advanced astronomical treatises on specialized
topics (e.g., the theory of the motion of the planets), which were produced
later, naturally required the use of specific observations. Later Greek writers
of elementary astronomy texts were fond of citing the case of Canopus,
a bright star in the modern constellation Carina. Canopus is one of the bright-
est stars in the sky, second only to Sirius. Canopus was visible in Egypt
but not in Greece. It began to peek above the horizon at about the latitude
of Rhodes or Cyprus. The reports of travelers concerning this “bright star of
the Egyptians” perhaps played a role in the early debate over the shape of the
Earth.

We leave it to the reader to explicate the argument based on elephants.
Aristotle does not claim it as his own, but attributes it to certain others left
unnamed. It is clear that he regarded it as less convincing than the two
astronomical arguments, but he did not refrain from using it.

Aristotle remarks that the mathematicians who calculate the circumference
of the Earth put it at 400,000 stades. This is the oldest recorded calculation
of the size of the Earth. The stade, or stadion, was a unit of length used in
the Greek world. Originally the word indicated the length of a race track as,
for example, that at Olympia. However, stades of several different lengths
were in use. Various ancient sources give values between 7 1/2 and 9 stades
to a Roman mile, the Roman mile being about 0.925 of our own.” Aristotle’s
figure thus puts the Earth’s circumference between 40,000 and 50,000 statute
miles. The actual circumference is about 25,000 miles, so Aristotle’s value is
certainly of the right order of magnitude. It is not known who the “mathemati-
cians” were that Aristotle cites. A name that has often been proposed is that
of Eudoxus of Cnidus.



Three Later Writers

Later writers added to the stock of arguments that the Earth is a sphere. The
new arguments had no bearing on the outcome of the case, which had been
settled by the middle of the fourth century B.c. But these new arguments for
the sphericity of the Earth acquired a place in the textbooks and so played
arole in education from ancient times down to the Renaissance. Three impor-
tantand characteristic writers are Ptolemy, Theon of Smyrna, and Cleomedes.
Prolemy the reader already knows as the author of the Almagest (ca. A.D. 140).

Theon of Smyrna (an important city on the west coast of Asia Minor) was
the author of a book titled Mathematical Knowledge Useful for Reading Plato.
The book contains a number of references to Plato and is Platonic in its
underlying philosophy of nature, but it is far from being a commentary on
Plato’s writings. In fact, Theon’s book is an introductory survey of mathemat-
ics. Traditionally, the Greeks divided mathematics into four branches: arithme-
tic, geometry, astronomy, and music theory. A section of Theon’s book
probably was devoted to each of these. The section dealing with geometry
and a part of that dealing with music theory have not come down to us, but
we have intact the sections on astronomy and arithmetic. Theon’s book is
not at the same level as Ptolemy’s. Ptolemy wrote a technical treatise for
astronomers, containing the most advanced material of the time, while Theon’s
book is an introduction for beginners. In figure 1.30 we see a bust of Theon
of Smyrna, found at Smyrna and now in the Musei Capitolini in Rome. The
Greek inscription says that the bust of Theon, the Platonic Philosopher, was
dedicated by his son, Theon the Priest. Likenesses of Greek scientific writers
are extremely rare. There are, to be sure, “portraits” of Euclid and other
mathematicians, but these were almost always produced centuries after the
fact—they are merely symbolic figures. The bust of Theon is interesting because
we know it was commissioned by his son and may actually resemble Theon.
Moreover, the bust provides a means of dating Theon. Art historians date it,
by its style, to the reign of Hadrian (early second century a.p.). In the Almagest,
Prolemy refers to observations made at Alexandria by a certain Theon. Thus,
it is possible that Theon of Smyrna was an elder friend (perhaps a teacher)
of Ptolemy. But Theon was a common name, so we cannot be certain that
Prolemy’s Theon was the same man.

The date of Cleomedes is uncertain. Considering the other writers whom
Cleomedes cites or fails to cite, we shall probably not be far wrong if we
adopt a date of the first or second century a.p. Cleomedes was the author of
an introduction to astronomy titled something like On the Elementary Theory
of the Heavenly Bodies. Like the books by Geminus and Theon of Smyrna,
Cleomedes” work is elementary and not mathematical. It, too, was intended
for beginning students. In his physical doctrines Cleomedes was a follower
of Posidonius (first century 8.c.), the most famous and influential of the Stoic
philosophers. Cleomedes’ Stoic inclinations lend his book a flavor rather
different from that of Theon’s.

All three writers (Cleomedes, Theon of Smyrna, Prolemy) repeat an argu-
ment of Aristotle’s—that, as we move north or south on the Earth, we observe
changes in the visibility of the stars. Both Ptolemy and Theon point out that
this proves only that the Earth is curved from north to south and not necessarily
from east to west. Theon cites the case of the star Canopus, which “although
invisible in the parts north of Cnidus, becomes visible in more southerly
regions.”* Curiously, none of these writers mentions Aristotle’s argument
from the shape of the Earth’s shadow. However, all add new arguments not
found in Aristotle.

The Earth Is Neither Flat nor Hollow Both Prolemy and Cleomedes argue
that the Earth could not have any of several alternative shapes: flat, hollow,
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FIGURE 1.30. Theon of Smyrna. This bust,
found at Smyrna, was dedicated by Theon’s son.
Photo courtesy of Musei Capitolini, Rome.
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cubical, pyramidal, and so on. If the Earth were flat, the Sun and stars would
rise and set simultaneously for everyone on Earth. If the Earth were concave
{fig. 1.31), the Sun, rising in the east, would be seen first by those living in
the west. One should not infer that these demonstrations were directed against
a geographical theory in need of refutation. By the second century a.p., these
demonstrations had become traditional: they were standard, if rather pedantic,
fare for an introduction to astronomy.

Argument from the Delay of Dawn All three writers (Cleomedes, Theon of
Smyrna, Ptolemy) remark that the Sun, Moon, and stars do not rise simultane-
ously everywhere on Earth, but rise earlier for those more toward the east. As

FIGURE 1.31. If the Earth were concave,
observers in the west would see the morning
Sun before observers in the east.

Cleomedes notes, sunrise comes four hours earlier for the Persians than for
the Iberians. Since Spain is about 60° west of Persia, Cleomedes™ figure is
about right. However, this is a “demonstration” that never was carried out
in practice. It represents an example of backward science, in which the supposed
observation (a four-hour time difference between Spain and Persia) is in fact
adeduction from an already held theory {the sphericity of the Earth). Backward
science has been a common method of argument in science textbooks from
antiquity to our own day.

Argument from the Local Times of Lunar Eclipses  Similar in nature is the use,
made by all three writers, of the observed times at which a lunar eclipse occurs.
A lunar eclipse occurs at the same instant for all who can see it. Bur if the
Moon is eclipsed at the first hour of the day for the Iberians (to take Cleomedes’
example), the same eclipse is observed at the fifth hour in Persia, and at an
intermediate hour for people located between these places. Moreover, as
Ptolemy says, the differences in times are proportional to the distances.

In figure 1.28, the Moon is entering the Earth’s shadow, so observers at
A, B, and C all see the eclipse beginning. For B, the local time is midnight,
for the Sun is on the meridian below the Earth. But for 4, it is early morning
and the Sun is about to rise. For C, the time is early evening, that is, shortly
after sunset. Thus, the three observers, who see the eclipse beginning at the
same instant, report three different times of day. A difference of one hour
corresponds to a difference in longitude of 15°. Such observations played no
role in the original discovery of the Earth’s sphericity. Timed eclipse observa-
tions were made in Mesopotamia as early as the eighth century B.c., but such
observations by Greeks did not appear until Hellenistic times, when the shape
of the Earth had already been decided. And comparisons of the observed times
taken, for the same eclipse, from two different localities were rare indeed.

Several Greek geographical writers advocated the use of lunar eclipses for
establishing geographical longitudes. Strabo, an Alexandrian geographer of
the early first century A.p., tells us that Hipparchus advocated such a practice.
In a work called Against Eratosthenes—a work that is now lost but was available
to Strabo—Hipparchus insisted that the difference in longitude between two
places could not accurately be found by any other method than that of lunar
eclipses.” As we have scen, the lazitude of a place on the Earth may easily be
obtained by measuring the altitude of the celestial pole. The longitude is
another matter: no simple observation made at a single locality suffices. The
ancient geographers were forced to rely on distance estimates made by travel-
ers—a notoriously unsound source.

Ptolemy, in a chapter of his Geography titled “That observations from the
celestial phenomena ought to be preferred over those taken from the stories
of travelers,”® took the same position as Hipparchus. But, despite the urgings
of Hipparchus and Ptolemy, geographical longitude remained a very uncertain
quantity almost to modern times.

There appears, indeed, to be but a single ancient lunar eclipse that was
ever applied in the manner suggested by Hipparchus and Ptolemy. The eclipse



of September 20, 331 B.C. occurred eleven days before the battle of Arbela,
where Alexander the Great decisively defeated Darius I1I, the King of Persia.
Prolemy (quoting the historians of Alexander’s campaign) notes that at Arbela
the eclipse of the Moon occutred at the fifth hour of the night. But at Carthage
in North Africa the same eclipse was recorded as occurring at the second hour.
This three-hour time difference between Arbela and Carthage corresponds to
a 45° difference in longitude, which somewhat overstates the case (2 1/4 hours
and 34° are nearer the mark). Thus, Prolemy considerably overestimated the
distance from Arbela to Carthage.67 Indeed, he tended to overestimate the
breadth of the whole known world—a fact that, many centuries later, falsely
encouraged Columbus, for it made the western ocean narrower.

Argument from Sailing Ships  Our three writers all cite an excellent argument
drawn from experience with sailing. Ptolemy writes, “if we sail towards moun-
tains or elevared places . . ., they are observed to increase gradually in size as
if rising up from the sea itself in which they had previously been submerged:
this is due to the curvature of the surface of the water.”® Cleomedes adds
that it is the same with the ships themselves: as they sail away from land,
their hulls are seen to disappear first, while the masts and rigging may still
be seen.” Both Cleomedes and Theon mention the fact that sailors are some-
times sent up the mast to get a longer view: “And often, during a voyage, if
the land or an advancing vessel is not yet seen from the ship, those who have
climbed up the mast see it, as they are in a high place and so peck over the
curvature of the sea which blocked vision.””* These arguments, although never
mentioned by Aristotle, must have been old among the Greeks, who were a
seafaring people.”

The Mountains Are Less Than Miller Seeds  How important are the irregularit-
ies produced by mountains and valleys? In the extract below, Theon of Smyrna
proves that the mountains and valleys are negligible. He shows that if we
represent the Earth by a one-foot sphere, the highest mountain would corre-
spond to one-fortieth the diameter of a millet sced—truly an inconsequential
irregularity. Theon uses four darta in his calculation: (1) the circumference of
the Earth is 252,000 stades, as shown by Eratosthenes; (2) the ratio of the
circumference of a circle to its diameter is approximarely 3 1/7, as shown by
Archimedes; (3) approximately 12 1/2 miller seeds make a finger’s breadth; and
(4) the highest mountains on Earth are about 10 stades high, as measured by
Eratosthenes and Dicacarchus.

EXTRACT FROM THEON OF SMYRNA
Mathematical Knowledge Useful for Reading Plato 111, 24

Let not anyone believe the projection of the mountains or the depression
of the plains, considered in relation to the size of the whole Earth, to
be, as irregularities, sufficient cause [for doubting the Earth’s sphericity].
Eratosthenes shows that the whole size of the Earth, measured by the
circumference of a great circle, is approximately 252,000 stades; and Archi-
medes, that the circumference of a circle, stretched out in a straight line,
is three times the diameter plus about one seventh of it. Thus the whole
diameter of the Earth would be approximately 80,182 stades. For three times
this number plus a seventh of it was the perimeter of 252,000 stades.
Just as Eratosthenes and Dicaearchus say they have found, the vertical
projection of the highest mountains with respect to the lowest places of
the Earth is ten stades. The projection is observed by means of instruments
to be of such a size, with dioptras for measuring the height from intervals
[marked on the instrument]. The height of the highest mountain is then
approximately one eight-thousandth of the whole diameter of the Earth.
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If we were to make a sphere a foot in diameter, since the distance of a
fingerwidth is filled in length by approximately twelve and a half diameters
of a millet seed, the one-foot diameter of the constructed sphere would be
filled in length by two hundred millet-seed diameters, or a little less. For
the foot has 16 fingers; the finger is filled by 12 diameters of a millet seed;
and 16 times twelve is 192. The fortieth part of the diameter of a millet
seed is therefore greater than one eight-thousandth of the one-foot diameter,
for forty times two hundred is eight thousand.

It has been shown that the height of the highest mountain is approxi-
mately one eight-thousandth part of the diameter of the Earth, and thus
that the fortieth part of the diameter of a millet seed has a greater ratio to
the one-foot diameter of the sphere.”

The Dicaearchus mentioned by Theon is Dicaearchus of Messina in Sicily
(ca. 320 B.c., who was a pupil of Aristotle. It was as a geographer that he
made his mark, for he was among the first to grapple systematically with the
arrangement of the whole known world. In this he was a predecessor of
Eratosthenes, Hipparchus, Strabo, and Ptolemy. He is said to have been the
first to measure the heights of mountains by triangulation, a subject on which
he wrote a book. All his works are lost.

The Possibility of Circumnavigating the Globe

A common geographical view was that the outer ocean was one. That is, the
known world, consisting of Europe, Africa, and Asia (although the wholes of
these continents were not known to the Greeks), formed a single land mass,
bathed on all sides by a single ocean. Thus, in principle, it should be possible
to sail around the globe. One should be able to reach eastern Asia by sailing
to the west.

We find such a possibility mentioned by Strabo. Strabo traveled widely in
the Mediterranean, passing considerable time both in Rome and in Alexandria.
He was the author of a long historical work that has not survived and also a
Geography in seventeen books that has come down to us intact. Strabo’s
Geography is an important source of information on the Mediterranean narions
and peoples in the first century B.c. Strabo also has a good deal to tell us
about the geographical opinions of his predecessors, Eratosthenes, Hipparchus,
and Posidonius, whose works are now lost.

EXTRACT FROM STRABO
Geography 1, 1

We may learn both from the evidence of our senses and from experience
that the inhabited world is an island; for wherever it has been possible for
man to reach the limits of the Earth, sea has been found, and this sea we
call “Oceanus.” And wherever we have been able to learn by the evidence
of our senses, there reason points the way. For example, as to the eastern
(Indian) side of the inhabited Earth, and the western (Iberian and Mauru-
sian) side, one may sail wholly around them and continue the voyage for
a considerable distance along the northern and southern regions; and as
for the rest of the distance around the inhabited Earth which has not been
visited by us up to the present time (because of the fact that the navigators
who sailed in opposite directions toward each other never mer), it is not
of very great extent, if we reckon from the parallel distances that have been
traversed by us.

It is unlikely that the Atlantic Ocean is divided into two seas, thus being
separated by isthmuses so narrow and that prevent the circumnavigarion;
it is more likely that it is one confluent and continuous sea. For those who
undertook circumnavigation, and turned back without having achieved



their purpose, say that they were made to turn back, not because of any
continent that stood in their way and hindered their further advance,
inasmuch as the sea still continued open as before, but because of their
destitution and loneliness.

This theory accords better, too, with the behaviour of the ocean, that
is, in respect of the ebb and flow of tides; everywhere, at all events, the
same principle, or else one that does not vary much, accounts for the
changes both of high tide and low tide, as would be the case if their
movements were produced by one sea and were the result of one cause.”

Thus, fifteen centuries before Columbus, the possibility of reaching Asia by
sailing westward from Europe was already discussed.

I1.10 THE ANNUAL MOTION OF THE SUN

The North-South Motion of the Sun

Equinoxes, Solstices, and Tropics Let us consider the north-south motion of
the Sun, starting with the vernal or spring equinox on March 21, the official
beginning of spring. On this day, the Sun lies on the celestial equator. The
word equinox refers to the fact that, on this day, the night is equal to the
day: each is twelve hours long. Figure 1.32 shows a side view of the Earth on
March 21. The Sun is directly above the equator, so its rays fall vertically
down on point £. This fact determines the orientation of the central ray of
light £C. The other rays were drawn parallel to this one. The parallelness of
the rays reflects the fact that the Sun may be taken as infinitely far away.

Through March, April, and May, the Sun moves north. On June 22 it
reaches its most northerly point, 23 1/2° above the equator. This day is called
the summer solstice. It is the longest day of the year and the official beginning
of summer. In Figure 1.33, the central ray has been drawn to coincide with
the zenith direction at A, which is 23 1/2° north of the equator. The other
rays were drawn parallel to this one. 4 lies on a circle on the Farth called the
tropic of Cancer.

On September 23, the Sun, moving south, reaches the equator again. The
day is twelve hours long again. This day is called the autumnal equinox and
is the official beginning of autumn.

On December 22, the Sun reaches its most southerly point. This day is
called the winter solstice and is the official beginning of winter. The Sun shines
up from beneath the equator. At noon the Sun is straight overhead at points
on the Earth’s tropic of Capricorn, 23 1/2° south of the equator.

Seasons Now it is easy to see why there are seasons. In figure 1.33, for June
22, five Sun rays fall on the northern hemisphere and only two on the
southern hemisphere: the sunlight is distributed in such a way that the northern
hemisphere receives more than the southern. (But no ancient writer ever made
this argument.) Moreover, in June the Sun stays above the ground for a long
time each day.

[t is also easy to see that the seasons are reversed in the southern hemisphere.
Note that this rather remarkable fact follows simply from the shape of the
Farth and the annual motion of the Sun. There is no need to travel to Australia
to find this out.

Change of the Shadow Plot through the Year The shadow plots of figure 1.34
were all made at Seattle using the same gnomon.

March 21 (plot 4). The shadow plot on the day of the equinox is a straight
line. This gives an easy way of determining the date of the equinox.
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FIGURE 1.32. Spring equinox (March 21) or
autumnal equinox (September 23).

FIGURE 1.33. Summer solstice (June 22).
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FIGURE I1.34. A sequence of shadow plots
made at Seattle. On each plot, the points are
half an hour apart. 1, June 22; 2, May 21 or
July 23; 3, April 20 or August 24; 4, March 21
or September 23; 5, February 19 or October 24;
6, January 20 or November 23; 7, December 22.
G labels the point at which the gnomon was set
up perpendicular to the plane of the diagram.
The line H shows the height of the gnomon

that was used.

April 20 or May 21 (plot 3). In the spring months, two changes become
evident in the shadow plot. First, the noon shadow becomes shorter. This
reflects the fact that the Sun is now farther north on the celestial sphere and
higher in the sky at noon. The second change involves the overall shape of
the shadow plot. It now is curved, so as to enclose the gnomon. This change,
too, reflects the fact that the Sun is north of the celestial equator: when the
Sun is north of the equator, it rises north of east, crosses the meridian in the
south, and sets north of east. Thus, the Sun behaves rather like Arcturus in
figure 1.20.

June 22 (plot 1). On June 22, the day of the solstice, the noon shadow is
its shortest, which gives a good way of determining the date of the solstice
by observation.

September 23 (plot 4). On the autumnal equinox, the shadow plot is again
a straight line.

October 24 or November 23 (plot 5). The shadow plot begins to curve away
from the gnomon. That is, the tip of the shadow stays north of the gnomon
all day long. This reflects the fact that the Sun is now south of the celestial
equator and behaves rather like Sirius in figure 1.20.

December 22 (plot 7). On the winter solstice, the noon shadow is at its
longest, which gives an easy way of determining the solstice.

Historical Examples of Shadow Plots Examples of shadow tracks like those in
figure 1.34 may be seen on horizontal plane sundials from Greek and Roman
times. Two such dials are illustrated in figures. 3.4 and 3.5. On each of these
dials, three shadow tracks are engraved: for summer solstice, equinox, and
winter solstice. The upper curved track (concave upward) is for summer
solstice. The equinoctial track is the horizontal straight line. The lower curved
track (concave downward) is for winter solstice. The location of the gnomon,
now missing, is indicated on the drawing of the Roman dial (fig. 3.4) by a
small dot just above the middle of the summer shadow track. Similarly, on
the drawing of the dial from Delos (fig. 3.5), the gnomon hole is indicated
by a small circle above the summer shadow track. The system of eleven lines
that intersect the shadow tracks was used to tell the hour of the day. These
sundials were laid out by theoretical methods (as were, of course, the shadow
plots of fig. 1.34). In sections 3.2 and 3.3 we show how the ancient dialers
drew them.

The Eastward Motion of the Sun

The north-south motion of the Sun is responsible for the seasons. The changes
produced by the Sun’s eastward motion are more subtle: we see different stars
at different times of the year.

The Ecliptic  The Sun’s north-south and west-east motions are, of course,
not separate. Rather, they are both the consequence of the Sun’s yearly motion
along a single circle thar is oblique, or slanted, with respect to the equator.
This path of the Sun’s annual motion is called the ecliptic (see fig. 1.35). The
angle between the plane of the ecliptic and the plane of the equator is called
the obliquity of the ecliptic, which we denote € (€ = 23 1/2°).

Let us follow the Sun in its annual course about the Earth. Refer to figure
.35. On the day of the vernal equinox, the Sun’s motion along the ecliptic
causes it to cross over the equator at the vernal equinoctial point VE. In the
present age, the constellation Pisces is located at the vernal equinox. Thus,
in March, Pisces cannot be seen, for it is above the horizon only when the
Sun is up. The stars in the opposite part of the sky (e.g., the stars of Virgo)
are visible for their longest period of time, for in March they are directly
opposite the Sun and so cross the meridian at midnight.
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In late June the Sun reaches the summer solstitial point 8§ and is as far
north of the equator as it ever gets. Gemini is near the summer solstice. The
stars of Gemini therefore cannot be seen in June, but conditions are favorable
for viewing Sagittarius, Aquila, and Lyra, which are located in the opposite
part of the sky. Sagittarius lies nearly on the ecliptic; Aquila, on the celestial
equator; and Lyra, well north of the equator.

In September, the Sun again crosses the equator, this time at the autumnal
equinox AE, while passing through the stars of Virgo.

In December, the Sun passes through Sagittarius, near the winter solstice

WS.

The Empirical Basis of the Ecliptic The ecliptic can be known approximately
through rough observations of the stars. Consider a time of year two weeks
before the Sun reaches Gemini. Let us look to the west just after sunset. Low
on the horizon, near the place where the Sun went down, we would see the
brighter stars of Gemini; shortly afterward, these stars would set, too.

If we repeated this operation a few weeks later, we would no longer see
the stars of Gemini, for the Sun would have advanced on the ecliptic and
would now be among them. But shortly after sunset, near the place on the
horizon where the Sun went down, we would see the stars of Cancer. If we
repeated our observations at intervals of a few weeks through an entire year,
we could identify the whole path of the Sun through the constellations. The
path mapped out in this fashion would not be a precisely defined great circle.
Rather, it would be a broad band of constellations: the zodiac. We reserve
the term ecliptic for a single circle, which is the precise path of the Sun.

The zodiac can also be picked out by observing the motions of the Moon
and planets. All of these objects move more or less in the same plane. None
of them travels exactly on the ecliptic, but none wanders very far north or
south of it. On a night when the Moon and several of the planets are up,
one sees them ranged across the sky more or less in a line—a sight that makes
the orientation of the zodiac immediately sensible.

The precise location of the ecliptic circle among the stars can be defined
by means of lunar eclipses. During a lunar eclipse, when the Moon falls into
the Earth’s shadow, the Sun, Earth, and Moon lie on a straight line. The
position of the eclipsed Moon therefore identifies a part of the sky that is
diametrically opposite the Sun. Indeed, this is the origin of the term eclipzic
circle: it is on this circle alone that eclipses can occur.

THE BIRTH OF ASTRONOMY

FIGURE 1.35. The Sun’s path through the
zodiac constellations is inclined to the plane

of the equator.
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FIGURE 1.36. Positions of the setting Sun on
the western horizon.

Historical Origins of the Ecliptic

Knowledge of the Solstices and Equinoxes  Already in Hesiod’s Works and Days
we find references to the solstices and the equinoxes (see sec. 1.1). This shows
that, at least by the seventh century B.c., the solstices and equinoxes were a
matter of common knowledge among the Greeks. The equinox, as a time of
year, was probably known only roughly, as the season when days and nights
were approximately equal. The solstices were called by Hesiod, as by later
writers, fropai helioio, “turnings of the Sun” (from which we get our word
“tropic”). This terminology reflects the manner in which the solstices were
first observed. If one watches the Sun set each evening during the spring, one
sees the setting point gradually work its way north along the horizon (see fig.
1.36). For several weeks around the summer solstice, the setting Sun’s position
scarcely changes but remains at its extreme northerly limit. Then, as the
summer wears on, the Sun turns and its setting position begins to work its
way south again.

Anaximander of Miletus  Such practical awareness does not, however, imply
knowledge of the ecliptic as a circle on the celestial sphere. The discovery of
the ecliptic and of its obliquity is obscure. Anaximander (sixth century B.c.),
the philosopher from Miletus, is said to have set up a gnomon at Sparta and
to have used it to demonstrate the solstices and equinoxes as well as the
hours of the day. Our sources are disappointingly vague, but this claim for
Anaximander is not an impossible one. The summer solstice was observed,
of course, by noting the day on which the noon shadow was shortest, and
the winter solstice, the day on which the noon shadow was longest. The
equinoxes could have been demonstrated either as the day on which the
shadow plot was a straight line or as the day on which the Sun’s noon altitude
was midway between the two solstitial altitudes. Whether Anaximander con-
ceived of the ecliptic as an oblique great circle we cannot say.

According to Aétius, Anaximander taught that the Sun is a circle, twenty-
seven or twenty-eight times the size of the Earth, like a chariot wheel, the
rim of which is hollow and filled with fire. At one point on the rim is an
opening through which the fire shines out: it is this opening that we perceive
as the Sun. Eclipses of the Sun occur through the opening being stopped up.
The Moon is of a similar nature; lunar eclipses and phases of the Moon are
due to partial or complete closures of its vent. According to Aétus, Anaxi-
mander also said that the circle of the Sun, like that of the Moon, is placed
“obliquely.” Does this rather broad cosmological speculation indicate a knowl-
edge of the ecliptic? Perhaps. But it is also possible that the passing mention
of the obliqueness of the Sun-wheel was inserted as an explanatory remark
by Aétius himself, who was describing Anaximander’s philosophy to Greek
readers of the first century a.p. When we consider the character of Anaximand-
er’s cosmological views, it appears a little rash to attribute to him a clear
understanding of the nature of the Sun’s circle and of its obliquity.”*

Meton and Euctemon Anaximander’s primitive cosmology was outmoded
carly in the following century, when Anaxagoras stated the true cause of
eclipses (see sec. 1.9). We know also that two astronomers named Meton and
Euctemon observed at Athens the summer solstice of 432 B.C. as part of an
attempt to evaluate more accurately the length of the year.”” Thus, by the
latter half of the fifth century B.c. the observation of solstices was beginning
to be a rather ordinary activity. It is likely that a clear conception of the
ecliptic as an inclined great circle dates from around the same time.

The Babylonian Zodiac The conception of the ecliptic as an inclined path
is found very clearly expressed at a much earlier date in Babylonian astronomy.



Already in MUL.APIN (seventh century B.C.), we have explicit statements
that the Sun and planets follow the same path as the Moon:

The Sun travels the [same] path the Moon travels.

Jupiter travels the [same] path the Moon travels.

Venus travels the [same] path the Moon travels.

Mars travels the [same] path the Moon travels.

Mercury, whose name is Ninurta, travels the [same] path the Moon
travels.

Saturn travels the [same] path the Moon travels.

Together six gods who have the same positions, [and] who touch the
stars of the sky and

keep changing their positions.”

Moreover, the text gives a list of seventeen constellations along the path of
the Moon, with the remark that the Moon “touches” them.” This seems to
mean that the Moon can pass over, or occult, these constellations. Since the
Moon is never more than 5° north or south of the ecliptic, we should find
that these seventeen star groups are all within 5° of the ecliptic—which is
indeed the case. The reason there are more than twelve constellations in the
Moon’s path is that some of the standard zodiac constellations were treated
in several parts. For example, the “Stars” (the Pleiades) are listed separately
from the Bull of Heaven. Thus, it appears that when MUL.APIN was written,
the twelve-constellation zodiac was not yet standard.

In another part of MUL.APIN we find explicit mentions that the Sun is
farther north or south on the sky at different times of the year:

From the 1st of Addaru until the 30th of Ajjaru the Sun stands in the path
of the Anu stars; wind and weather.

From the 1st of Simanu until the 30th of Abu the Sun stands in the path
of the Enlil stars; harvest and heat.

From the 1st of Ululu until the 30th of Arahsamnu the Sun stands in the
path of the Anu stars; wind and weather.

From the 1st of Kislimu until the j0th of Sabatu the Sun stands in the
path of the Ea stars; cold.”

(For the order of the month names, see fig. 1.3. For the ways of Enlil, Anu,
and Ea, see sec. 1.1.)

During months XII, I, and II, the Sun is among the stars of Anu—or, as
we would say, near the celestial equator. During months III, IV, and V, the
Sun is among the stars of Enlil—the northern stars. During months VI, VII,
and VIII, the Sun is again among the equatorial stars of Anu. During months
IX, X, and XI, the Sun is among the southern stars—the stars of Ea. If we
puct all this together, we have a picture very close to figure 1.35. The Babylonians
did not geometrize the world in the manner of the Greeks. There are no
Babylonian equivalents of Euclid or Eudoxus, for example. But, clearly, the
notion of the ecliptic as an inclined path through the stars was already well
established by about 650 B.c.

Oenopides of Chios Among the Greeks, the discovery of the ecliptic was
attributed to Oenopides of Chios, who flourished about 450 B.c. (Chios is a
city on a large island of the same name that lies off the west coast of Asia
Minor.) Oenopides was a mathematician as well as an astronomer. He is
said to be responsible for introducing the requirement that in geometric
demonstrations no other instruments be allowed than straight edge and com-
pass, and to have proved some of the compass-and-straight-edge constructions
that later made their way into Euclid’s Elements.”

In astronomy, Oenopides made an attempt to evaluate the lengths of the
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year and the month in terms of one another. According to Oenopides, 59
years contain a whole number (730) of lunar months. This period, the so-
called “great year” of Oenopides, is an example of a luni-solar cycle, a subject
discussed in chapter 4. In investigating the lengths of the year and month,
Ocnopides was a predecessor of Meton, whose work, a generation later,
superseded his own.

Our authority for Oenopides’ discovery of the ecliptic is Eudemus of
Rhodes. Eudemus, who flourished about 325 B.C., passed some time in Athens,
where he was a pupil of Aristotle. Eudemus wrote histories of the development
of mathematics and astronomy, which survive only in fragmentary quotations
by later writers. Eudemus may with some justice be considered the first
historian of science. Eudemus is quoted by our old friend Theon of Smyrna
in a short passage on early astronomical discoveries:

Eudemus recounts in his Astronomy that Oenopides was the first to discover
the encircling belt of zodiac and the existence of the great year . . . . Others
added other discoveries to these: thart the fixed stars move around the axis
which passes through the poles, but that the planets move around the axis
which is perpendicular to the zodiac, and that the axis of the fixed stars
and the axis of the planets are separated from one another by the side of
a pentadecagon, that is, by 24 degrees.”

This short passage presents many difficulties. Eudemus does not make the
nature of QOenopides’ discovery very clear. “Others” discovered the fact that
all the planets move in the zodiac. Oenopides’ discovery perhaps then applied
only to the Sun. If he measured the obliquity of the ecliptic, he was not the
source of the 24° value, for Eudemus attributes this value, again, to others.
Nor could Oenopides simply have pointed out the constellations that lay
along the zodiac. As discussed in section 1.8, the zodiacal constellations are
of Mesopotamian origin. It is possible that Oenopides played a role in the
introduction of the Babylonian zodiac to the Greeks. But this would hardly
amount to a “discovery.” The most likely possibility, then, is that Oenopides
gave some sort of geometrical demonstration of the circular, beltlike nature
of the Sun’s path, that is, that he proved the ecliptic to be an oblique great
circle. However, we simply do not know.

In any case, by the close of the fifth century B.c., the Babylonian zodiac
was well established among the Greeks. The first Greek parapegmata (star
calendars) had been composed, based on a division of the year into zodiacal
signs. And the astronomers knew how to use the gnomon to observe solstices
and equinoxes. A science of astronomy had begun among the Greeks, incorpo-
rating original Greek methods and discoveries, as well as borrowing from their
Babylonian contemporaries.

I.II OBSERVATION: THE MOTION OF THE MOON

In the course of a month, the Moon moves eastward all the way around the
zodiac. Thus, the Moon does in a month what the Sun does in a year.
Observing the zodiacal motion of the Moon is therefore a good way of learning
the zodiacal constellations and of visualizing the motion of the Sun.

Begin at the time of the first visibility of the new crescent. This will be
one to three days after the time of new Moon. You can find the date of the
new Moon in an almanac or on a calendar. Start looking for the crescent
Moon in the west just after sunset. Once every night that the weather permits,
spot the Moon in the night sky and mark its location on a star chart. The
Moon takes only two or three days to move through each zodiac constellation,
so you can see a noticeable shift in only one day. Continue to plot the Moon’s
position as often as possible for the rest of the lunar month.



I1.12 THE USES OF SHADOWS

A sequence of shadow plots, as in figure 1.34, can be made to yield a good
deal of information.

Measuring the Obliquity of the Ecliptic

The Sun moves about 23 1/2° north or south of the equator. The arc between
the two tropics is therefore about 47°. How can this angle be determined
from observations of the Sun? This parameter, one of the most fundamental
for the development of astronomy, is also one of the easiest to measure.
Simply measure the noon altitude of the Sun at summer solstice, perhaps
with the aid of a gnomon (sec. 1.4 and fig. 1.9). Wait six months and measure
the noon altitude of the Sun at winter solstice. The angle between the tropics
is equal to the difference between the Sun’s noon altitudes at summer and winter
solstice. The angle between the equator and either one of the tropics is equal
to half the angle between the tropics. In modern terminology, this angle is

called the obliquity of the ecliptic, € (€ is labeled in fig. 1.35).

Ancient and Modern Values for the Obliquity of the Ecliptic The most ancient
value for the obliquity of the ecliptic is the round figure of 24°. The degree
was a Babylonian unit of measure, and it was not used in Greek astronomy
until the second century B.c. Earlier Greek writers often expressed this 24°
angle as one-fifteenth of a great circle (360/15 = 24). Or, again, the angle was
described as the angle subtended by the side of a regular pentadecagon (the
regular polygon with 15 sides), as in Theon of Smyrna’s quotation from
Eudemus at the end of section r.10.

It is not known who first ascribed the value of 24° to the obliquity of the
ecliptic. But the 24° figure was already current by the time of Euclid—about 300
B.C. In his Elements, Euclid shows how to construct a regular pentadecagon.”
Proclus, the fifth-century a.p. commentator on Euclid, refers to this proposi-
tion to illustrate his statement that Euclid deliberately included a number of
propositions that might be of use in astronomy.”

The value one-fifteenth of a circle for the obliquity of the ecliptic was not
a measurement in the modern sense. Certainly, it was based on measurements
and was, in fact, fairly close to the truth. But the adoption of this value was
partly determined by the Greek propensity for neat geometrical demonstration.
The idea that precise observations might be important to astronomy was slow
to dawn.

The most ancient measurement of the arc between the tropics to have come
down to us is that of Eratosthenes. According to Prolemy (Almagest 1, 12),
Eratosthenes reckoned that the arc between the tropics was 11/83 of the whole
meridian circle. Prolemy gives no details of Eratosthenes” method. But, as
Eratosthenes passed the latter half of his life at Alexandbria, it is likely that the
measurement was made there, toward the close of the third century B.c. The
peculiar value (11/83 of a circle) probably resulted from a geometrical calculation
based on gnomon measurements. Eratosthenes had to do his calculation
without either trigonometry or the use of the degree, which were both later
developments. According to Ptolemy, Eratosthenes’ value for the arc between
the tropics was also accepted by Hipparchus (ca. 140 8.c.). If we express
Eratosthenes’ figure for the arc between the tropics in terms of degrees, we
have

II

<
X
360 83

47°42"39".

Ptolemy says that he himself measured the arc between the tropics several
times over a period of years (ca. A.D. 140), using a meridian quadrant (see fig.
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/\ Sun's Rays

L

E quator 1 at Equinox
[

FIGURE I.37. Sunlight incident on the Earth
at equinox.

FIGURE 1.38. 8 is the declination of the Sun.
z is the Sun’s zenith distance at noon, as mea-
sured by an observer on the Earth at latitude L.
For any observer, L = 8 + z.

5.2). Prolemy found the arc always to be more than 47°40” but less than
47°4s’. He therefore adopted the value 47°42 2/3” (i.e., 47°42"40"), which was
consistent with his own measurements, as well as the work of his predecessors.
Thus, according to Ptolemy, the obliquity of the ecliptic is (47°42"40")/2, or

€ = 23°120” (Prolemy).
For the last half of the twentieth century, one should use
€ =23°26" (modern),

which is nearly half a degree smaller than Prolemy’s value. There are two
reasons for the difference. First, the ancient measurements of the obliquity
of the ecliptic were all a litcle too high. Second, the obliquity of the ecliptic
really has decreased slightly (about 1/4°) since antiquity.

Measuring the Latitude of a Place

The latitude of a place on Earth can be determined at night by measuring
the altitude of the celestial pole. But observations of the Sun can also be used.
Most convenient is a noon altitude measured at an equinox. However, the
discussion will be simplified if it is put in terms of zenith distance rather than
alticude. The zenith distance z of the Sun is the Sun’s angular distance from
the zenith; z is the complement of the altitude (see fig. 1.9).

Now, let us take up the problem of determining the latitude of a place
on the Earth from solar observations. Figure 1.37 shows the situation at an
equinox. The center of the Earth is C, the place of observation is A4, and the
latitude of this place is angle L. Since it is the time of equinox, the Sun’s rays
are parallel to the equator. The Sun’s zenith distance is z. Evidently, L = 2.
That is, on the day of the equinox, the Sun’s noon zenith distance, as measured
at some place on the Earth, is equal to the latitude of that place.

Measuring the Declination of the Sun

The declination of the Sun is its angular distance above or below the celestial
equator. Declinations north of the equator are conventionally counted as
positive; those below the equator are counted as negative. Thus, we say that
on June 22 the Sun’s declination is about +23 1/2°, on December 22, the
declination of the Sun is —23 1/2°, and on the equinoxes the Sun’s declination
is 0°. We will denote declinations by the letter 8. The declination of the Sun
on any day can be determined from its zenith distance, provided one already
knows the latitude of the place of observation.

In figure 1.38, we imagine ourselves at point 4 on the surface of the Earth.
Our local zenith direction is line CA. The angle L that this line makes with
the equator is our latitude. At local noon, the Sun’s zenith distance is z, which
is the angle between a ray of light arriving at A and the zenith direction.
Draw a second ray of light CB, parallel to the first one, but passing through
the center of the Earth C. The angle that this ray makes with the equator is
the Sun’s declination 8. Now, angle ACB is equal to 2, so we have the following
simple result:

L=z+34.

The relation obtained above for determining the latitude on the day of equinox
(i.e., L = 2) is a special case (for 8 = o) of this more general formula.

If L is known, and if z is measured with a gnomon or a quadrant, the
Sun’s declination can be calculated from 6 = L — z. Here we have one of the



simplest procedures for measuring a celestial coordinate—that is, specifying the
position of an object (in this case, the Sun) on the celestial sphere.

Equinoctial and Solstitial Shadows

In figure 1.9, GH represents a vertical gnomon, and 7H, the length of its
noon shadow. From the geometry of the figure,

tan z = TH/GH.

Then, since z = L — 8, we obtain
length of shadow = length of gnomon X tan(L — §).

This rule makes it easy to find the length of the shadow for a given place on
Earth at equinox or at summer or winter solstice.

For example, take the case of Athens, latitude 38° N. At summer solstice,
the Sun’s declination is approximately +23 1/2°, and we have

[e]
shadow = gnomon X tan(38° — 23 i ) = 0.26 X gnomon.

Thus, at Athens on the summer solstice, the noon shadow is about one-fourth
the length of the gnomon.
At equinox the Sun’s declination is o, and we find for Achens that

shadow = gnomon X tan(38° — o) = 0.78 X gnomon.

Similarly, one finds that at Athens on winter solstice the noon shadow is
about 1.8 times the length of the gnomon.

Equinoctial Shadows in Ancient Sources  In antiquity the length of the equinoc-
tial shadow was often used to specify the latitude. Shadow lengths could
easily be measured by people untrained in astronomy and without elaborate
instruments. Here is Vitruvius introducing his readers to the variation of the
equinoctial noon shadow with geographical latitude:

When the Sun is at the equinoxes, that is, passing through Aries or Libra,
he makes the gnomon cast a shadow equal to eight ninths of its own length,
in the latitude of Rome. In Athens, the shadow is equal to three fourths
of the length of the gnomon; at Rhodes to five sevenths; at Tarentum, to
nine elevenths; at Alexandria to three fifths; and so on at other places it is
found that the shadows of the equinoctial gnomons are naturally different
from one another.”

Pliny, the Roman encyclopedist of the first century A.D., writes in a similar
vein. He first points out (as does Vitruvius) that sundials constructed for one
place are not for use everywhere. The shadows change perceptibly “in three
hundred stades, or five hundred at the most.” Pliny continues:

Consequently, in Egypt at midday on the day of the equinox the shadow
of the pin or gnomon measures a little more than half the length of the
gnomon itself, whereas in the city of Rome the shadow is 1/9 shorter than
the gnomon, at the town of Ancona 1/35 longer, and in the district of Italy
called Venezia the shadow is equal to the gnomon, at the same hours.”

Shadow lengths reported by voyagers to distant regions were an important
source of information for the ancient geographers. Such observations could,
in principle, establish the relative north-south positions of even very distant

THE BIRTH OF ASTRONOMY

61



62 THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

localities. In practice, however, the geographical writers never had access to
a sufficiently large collection of data. Moreover, such shadow lengths as were
reported were often defective—the ordinary traveler was not often a very good
astronomer.

In the following quotation we see Strabo attempting to make use of just
such data. Strabo grapples with the problem of the location of Britain: just
how far north is it? Is Britain as far north as the mouth of the river Borysthenes
(the modern Dnieper, which empties into the Black Sea)?

The parallel through the mouth of the Borysthenes is conjectured by Hippar-
chus and others to be the same as that through Britain, from the fact that
the parallel through Byzantium is the same as that through Massilia [modern
Marseille]. For Pytheas found the ratio of the gnomon to its shadow in
Massilia; and Hipparchus says he finds the same ratio, at the same time of
year, in Byzantium.85

Pytheas of Massilia was a famous navigator who, about 285 B.c., explored the
northwest coast of Europe. His writings are lost and are known only through
quotations by later writers, such as Strabo. The dubious quality of many
ancient shadow lengths, and the conclusions based on them, is demonstrated
by reference to a modern map. The latitude of Marseille is about 43°18’ N,
while that of Istanbul (ancient Byzantium) is about 41°02” N. Hipparchus’s
use of Pytheas’s doubtful measurements therefore caused a mistake of about
2 1/4° in the relative latitudes of Massilia and Byzantium. This represents a
north-south displacement of some 150 miles. It should be added that Strabo
considered Pytheas to be unreliable and even a great liar.

On Zones

In Abmagest 11, 6, Prolemy discusses the characteristics of various parallels on
the Earth’s surface, in terms of the Sun’s behavior. The region between the
tropics is said by Prolemy to be amphiskian, meaning that the noon shadow
can point either north or south in the course of the year. The Greek adjective
is a compound of amphi (on both sides) and skia (shadow).

The part of the Earth between laticudes € and 90° — € (the temperate
zone) Prolemy describes as beteroskian, meaning that the noon shadow always
falls in the same direction. The adjective is a compound of Aeteros (to one
side) and skiz. Thus, in Greece, the noon shadow always points north.

Finally, the zone north of latitude 90° — & (what we call the arctic zone)
is said to be periskian, because, on some days of the year, the Sun is up all
day long. Then the shadow goes all the way around (per7) the gnomon. The
shadow track is a closed curve—in fact, an ellipse.

The same three terms are used by Strabo,” who attributes them to Posidon-
ius, the Stoic philosopher of the first century B.c. But the terms may well be
older than Posidonius.

The terrestrial zones, defined by the Sun’s behavior, are thus a product of
Greek astronomy. However, the Greeks often disagreed about the number of
zones. Five were implied by the celestial phenomena: two frigid, two temperate,
and one tropical. But Posidonius added two others, for a total of seven. The
two extra zones were narrow belts straddling the tropics. In each of these, the
Sun stood overhead for about half a month each year. These two narrow
zones, according to Posidonius, were parched by the Sun and therefore even
hotter than the region around the equator.

Polybius (third century B.c.), on the other hand, advocated six zones: two
frigid, two temperate, and two tropical. (Polybius divided the zone between
the tropics into two, using the equator as boundary.) It should also be noted
that many Greek writers defined the arctic circle (and hence the limit of the
frigid zone) differently than we do (see sec. 2.5).



But Strabo sensibly opts for five zones, defining them in terms of celestial
phenomena, by means of their amphiskian, heteroskian, and periskian proper-
. &7
ties, exactly as we do today.

I.I13 EXERCISE: USING SHADOW PLOTS

1. Use the shadow plots in figure 1.34 to measure the arc between the
tropics and the obliquity of the ecliptic.

2. Use the shadow plots in figure 1.34 to measure the latitude of Seattle.
Do this three times—using the plot for summer solstice, the plot for
the equinox, and the plot for winter solstice. Use the value of the
obliquity of the ecliptic that you obtained in problem 1 and the general
rule L = z+ 8. Of course, the latitude of Seattle should come out the
same all three times. But you may get small differences due to errors
of measurement.

3. What is the declination of the Sun on April 20? Use the appropriate
shadow plot in figure 1.34, together with the value you obtained in
problem 2 for the latitude of Seattle.

Find a place on the Earth at which the Sun would be directly overhead
at noon on April 20.

4. Find the latitude of your own city from an atlas or a map. Use the
shadow plot that you made in the exercise of section 1.3 to measure the
declination of the Sun.

For the day of your own shadow plot, find a place on Earth at which
the Sun would be directly overhead at noon.

5. In section 112, there are a number of equinoctial shadow lengths due
to Vitruvius and Pliny. How accurate are these ancient measurements?
To find out, proceed as follows. For each of the ancient equinoctial
shadow lengths, compute the equivalent latitude. In an atlas find the
actual latitudes of the places mentioned by Vitruvius and Pliny. You
may need to use a historical atlas to find some of the ancient place
names. Compare the actual latitudes with values you have deduced from
the shadow lengths.

6. Pytheas’s measurement of a shadow at Massilia [Marseille] resulted in
a 2 1/4° error for the latitude of that city. Suppose that at Marseille
(latitude 43° N) one attempts to measure the latitude by observing the
shadow cast by a 10-cm gnomon at noon on the equinox. How great
a mistake in measuring the shadow is required to produce a 2 1/4° error
in the latitude?

I1.I4 THE SIZE OF THE EARTH

Aristotle® says that certain mathematicians obtained 400,000 stades for the
circumference of the Earth. We have no details of the method used for this
first estimate of the size of the Farth, made perhaps around 350 B.c. Another
early figure for the circumference of the Earth is 300,000 stades, mentioned
by Archimedes in his Sznd Reckoner.” Archimedes does not tell us who made
this measurement, but some scholars attribute it to Dicaearchus, who died
around 285 B.c.” The first measurement of the size of Earth for which we
have any detailed information is that made by Eratosthenes later in the third
century B.C.

Eratosthenes on the Size of Earth

Eratosthenes was born around 276 B.c. in Cyrene, a Greek city on the North
African coast, in what is now Libya. As a young man he studied in Athens.
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After making a bit of a reputation in literary studies and philosophy, he was
offered a position by Prolemaios III Euergetes, who was King of Egypt from
246 to 222 B.C. Eratosthenes spent most of his adult life at Alexandria, first
as a tutor to the king’s son, Philopater (who was king from 222 to 205 B.C.),
then as a fellow of the Alexandria Museum, and later as head of the Library.

Eratosthenes was a man of wide interests. He was a literary critic who
made studies of Homer. He wrote a philosophical study, On the Good, and
a rhetorical treatise, On Declamation. But these works were criticized by Strabo

for superﬁciality.91 According to Strabo, Eratosthenes wanted to pass for a
philosopher but did not devote himself seriously enough to this calling and
vacillated among multiple interests. Eratosthenes’ most significant work was
his geographical treatise. He attempted to work out the arrangement of the
FIGURE 1.39. Sunlight incident on the Earth whole known world and introduced geometrical methods into geography.
at summer solstice. None of Eratosthenes’ works have survived except for his description of the
constellations, the Catasterisms, if this indeed is really his. However, many
extracts from his Geography are preserved by Strabo. It is likely that the attempt
to measure the Earth was a part of Eratosthenes’ researches in geography, part
of an effort to work out the scale of the world map.

While several ancient writers mention Eratosthenes’” measurement, the only
one who gives much detail is Cleomedes, in his introductory textbook of
astronomy and Stoic physics.”? Eratosthenes assumed that Alexandria and
Syene are on the same meridian. (Syene was a town on the Nile in upper
Egypt. The modern city on the same site is Aswan.) Moreover, Eratosthenes
assumed that Syene is on the tropic of Cancer.” Thus, at Syene, at noon on
the summer solstice, the gnomons have no shadows, because the Sun is straight
overhead.

But, at Alexandria at the same moment, the gnomons do cast shadows,
because that city is situated to the north of Syene. According to Cleomedes,
Eratosthenes measured the zenith distance of the Sun at noon in Alexandria
and found it to be 1/50 of a circle. Moreover, the distance between Alexandria
and Syene is 5,000 stades. From these premises, Eratosthenes worked out a
figure of 250,000 stades for the circumference of Earth.

Cleomedes gives full details of the geometrical demonstration. Its essence
(we simplify it a bit) is illustrated by figure 1.39. S is Syene, 4 is Alexandria,
and Cis the center of the Earth. On the summer solstice, the Sun was straight
overhead at Syene. Thus, the ray arriving ac S, if extended, would pass through
C. Eratosthenes measured the Sun’s zenith distance z at Alexandria on the
same day and found it to be 1/50 of a circle. z is equal to angle ACS, which
is the latitude difference between Alexandria and Syene. Thus, arc AS must
be 1/50 of the circumference of the Farth. Eratosthenes took the distance
between the two cities to be 5,000 stades. Therefore, the whole circumference
of the Earth is 50 X 5,000 = 250,000 stades.

It is impossible to convert Eratosthenes” figure of 250,000 stades into
modern units with any precision, because several different stades were in
common use. However, whichever stade was meant, Eratosthenes’ result was
certainly in the right range.

How did Eratosthenes know that there were no noon shadows at Syene
on the summer solstice? Probably this was common knowledge, brought back
to Alexandria by travelers from upriver. Cleomedes says that there are no
shadows over a region of about 300 stades in width. Strabo,” in his description
of Egypt, gives an account of a well at Syene: at the summer solstice, the rays
of the Sun reach down to the very bottom of the well. It is possible that
Eratosthenes heard a similar report and realized what it meant.

What about Eratosthenes’ figure of 5,000 stades for the distance between
Syene and Alexandria? It is clear that this was only a rough estimate, expressed
as a round number. It was probably based on reports of the time required
for travelers to pass from one city to the other, rather than on any real



measurement of the distance. In the same way, Eratosthenes’ figure of 1/50
of a circle (we would say 7.2°) for the zenith distance of the Sun at Alexandria
is clearly a round number. Thus, it might be fairer to decribe Eratosthenes’
assessment of the size of the Earth as an estimate rather than a real measure-
ment.

According to some ancient authorities,” Eratosthenes put the circumference
of the Earth, not at 250,000 but at 252,000 stades. This modification was
probably introduced, not as the result of a refined measurement, but rather
for the sake of arithmetical convenience. It was common practice to divide
the circle into sixty equal parts. Eratosthenes’ sixty-part division of the circle
is attested by Strabo.”® And we shall see other Greek astronomers and geogra-
phers using the same convention. (The degree, or 360-part division of the
circle, was not adopted by the Greeks until about a century after Eratosthenes’
time.) By putting the circumference of the Earth at 252,000 stades, Eratos-
thenes obtained an even number of stades per part: 252,000/60 = 4,200 stades
per sixtieth part. It happens, happily, that this also results in an even number
of stades per degree: 252,000/360 = 700 stades per degree.

Later Estimates

Posidonius {early first century B.C.) made an estimate of the size of the Earth,
based on the fact that the star Canopus could be seen in Egypt but not at
places farther north. Again, our most detailed source is Cleomedes (see sec. 1.15).
At Rhodes, Canopus barely grazed the southern horizon. But at Alexandria,
Canopus was 1/48 of a circle above the horizon. Then, taking 5,000 stades
for the distance between Alexandria and Rhodes, Posidonius arrived at 5,000
X 48 = 240,000 stades as the circumference of the Earth. Again, the round
numbers show that no serious effort was made to secure accurate measurements.

But, according to Strabo, Posidonius put the circumference of the Earth
at 180,000 stades.” Thus, it appears that Posidonius changed his mind. The
smaller figure was undoubtedly based on a lower value (3,750 stades) for the
distance between Rhodes and Alexandria. (This figure of 3,750 stades for the
distance between Rhodes and Alexandria is attributed by Strabo to Eratos-
thenes, who must have been Posidonius’s source.) Posidonius’s second value
of 180,000 stades for the circumference of the Earth also results in an even
number of stades per degree: 180,000/360 = 500 stades per degree.

These two figures left a considerable range of uncertainty in the scale of
the world map:

700 stades/degree  (Eratosthenes)
500 stades/degree  (Posidonius)

The lower value of 500 stades/degree (along with the associated and circum-
ference of 180,000 stades) was accepted by Prolemy in his Geography and thus
became the preferred figure. However, Eratosthenes’ value never dropped
completely out of sight. It reappears, for example, in the Sphere of Sacrobosco,
a thirteenth-century introduction to astronomy that was widely used in the
medieval European universities.”

In the early Middle Ages, a number of Arabic astronomers made measure-
ments of the circumference of the Earth. For example, the astronomers under
the patronage of al-Ma’min made such a measurement on the plain of
Palmyra (Syria) around a.p. 830.” One motive for making new measurements
was that the Arabic astronomers of the ninth century had no idea (any more
than we have) of the length of the stade used by Eratosthenes or Ptolemy.

In the later Middle Ages, both Greek and Arabic estimates of the size of
the Earth were in circulation in Europe. As the variety of estimates were
compounded by uncertainties over the values of the Greek and Arabic units
of measure, the European geographer was left with considerable freedom of
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choice. When Columbus tried to convince himself and others of the practicality
of his proposed voyage to Asia, he deliberately selected the smallest of the
available estimates for the size of the Earth and the largest possible estimate
for the width of the Eurasian continent. That made the western ocean as
narrow as possible and the voyage as attractive as possible. By sheer luck, it
turned out that Columbus’s voyage was of about the distance he expected.
He counted on a trip of under 3,000 miles berween Europe and Asia.'” In
3,000 miles he did, indeed, reach land. The true distance to Asia was more
than 10,000 miles.

1.1§ EXERCISE: THE SIZE OF THE EARTH

Around 100 B.c., Posidonius (see fig. 1.40), the Stoic philosopher and teacher
of Cicero, calculated the circumference of the Earth from information obtained
by observation of the star Canopus. Canopus is located in the steering oar of
Argo (in the modern constellation Carina). Cleomedes, writing perhaps 200
years later, described the method which Posidonius used. Cleomedes’ account
of Posidonius’s measurement immediately precedes his report of the more
famous measurement of Eratosthenes.

EXTRACT FROM CLEOMEDES
On the Elementary Theory of the Heavenly Bodies 1, 10, 2.

[Posidonius] says that Rhodes and Alexandria lie under the same meridian.
Meridian circles are [circles] drawn through the poles of the cosmos, and
through the point which is above the head of each [person] standing on
the Earth. The poles of all these [meridian circles] are the same, but the point
in the direction of the head is different. . . . Now Rhodes and Alexandria lie
under the same meridian, and the distance beeween the cities is reputed to

FIGURE 1.40. Posidonius, the Stoic philoso-
pher. This bust is a marble copy made during

the carly Empire of an original sculpted around
70 B.C. Museo Nazionale, Naples. bright star called Canopus lies to the south, practically on the steering oar

be 5,000 stades. Suppose it to be so. . . . Posidonius says next that the very

of Argo. This [star] is not seen art all in Greece; hence Aratus does not even
mention it in his Phenomena. But, as one goes from north to south, it
begins to be visible at Rhodes and, when seen on the horizon [there], it
sets immediately with the rotation of the cosmos. But when we have sailed
the 5,000 stades from Rhodes and are at Alexandria, this star, when it is
exactly on the meridian, is found to be at a height above the horizon of
one-fourth of a sign, that is, a forty-cighth of the meridian [drawn] through
Rhodes and Alexandria. It follows, therefore, that the segment of the same
meridian that lies above the distance beeween Rhodes and Alexandria is
one forty-eighth part of [the said circle], because the horizon of the Rhodians
is distant from the horizon of the Alexandrians by one forty-cighth of the
zodiac circle. ... And thus the great circle of the Earth is found to be
240,000 stades, assuming that from Rhodes to Alexandria it is 5,000 stades;
but, if not, [itis] in [the same] ratio to the distance. Such then is Posidonius’s
way of dealing with the size of the Earth.'”

The Exercise

1. What does the writer mean when he says, “But, as one goes from north
to south, it begins to be visible at Rhodes and, when seen on the horizon
there, it sets immediately with the rotation of the cosmos”™?

2. What does the writer mean when he says, “At Alexandria, this star,
when it is exactly on the meridian, is found to be at a height above the
horizon of one-fourth of a sign, that is, a forty-eighth of the meridian”?

3. Draw a diagram of the Earth showing the horizon at Rhodes and at
Alexandria and the various angles mentioned by Cleomedes. Prove that



the observations do indeed lead to the stated value for the circumference.
Make your geometrical arguments clear and convincing.

1.16 OBSERVATION: THE ANGULAR SIZE
OF THE MOON

The angular diameter of the Moon may be determined with the aid of a
millimeter scale. Hold the ruler out at arm’s length, as in figure 1.41, so that
the top of the ruler appears to coincide with the top limb of the Moon. Place
your thumb on the part of the ruler that coincides with the bottom limb of
the Moon. Let us call x the length thus marked off on the ruler. Ask a friend
to measure the distance 4 from your eye to the ruler.

The angular diameter 8 of the Moon is then given by

0 =sin " (;—Cl)

I.I7 ARISTARCHUS ON THE SIZES AND DISTANCES

Aristarchus of Samos

Aristarchus is remembered for two remarkable achievements. He advocated
the motion of the Farth around the Sun. And he was the author of a book
On the Sizes and Distances of the Sun and the Moon, the oldest surviving
geometrical treatment of this problem. Aristarchus was born around the begin-
ning of the third century B.c. He was a native of Samos, one of the larger
Greek islands in the Aegean Sea. He is said to have been a pupil of Strato of
Lampsacus. This Strato was at one time tutor, then advisor, to King Ptolemaios
IT Philadelphos, the patron of the Museum in Alexandria. After the death of
Theophrastus, Strato succeeded him as head the the Lyceum, the school of
Aristotlelian philosophy at Athens. Thus, Aristarchus could have been Strato’s
pupil either at Alexandria or at Athens. We do not know which. Ptolemy, in
Almagest 111, 1, cites an observation of the summer solstice of 280 B.c. made
by Aristarchus. This single observation is the only event of Aristarchus’s life
that may be dated. He is credited by Vitruvius with the invention of a type
of sundial (the scaphe). According to Aétius, Aristarchus also wrote a book
on vision, light, and colors.'”

The book in which Aristarchus argued for the motion of the Earth around
the Sun has not survived. The best testimony is a remark by Archimedes in
the Sand Reckoner, which is very close to Aristarchus in time.

EXTRACT FROM ARCHIMEDES
Sand Reckoner

Aristarchus of Samos brought out a book consisting of some hypotheses,
in which the premises lead to the result that the cosmos is many times
greater than that now so called. His hypotheses are that the fixed stars and
the Sun remain unmoved, that the Earth revolves about the Sun in the
circumference of a circle, the Sun lying in the middle of the orbit, and
that the sphere of the fixed stars, situated about the same center as the
Sun, is so great that the circle in which he supposes the Earth to revolve
bears such a proportion to the distance of the fixed stars as the center of
the sphere bears to its surface.'

As Archimedes says, Aristarchus realized that his premises implied a cosmos
that was vastly larger than previously believed. If the Farth moved around
the Sun, there should be a large annwual parallax. That is, the stars should
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Moon at first quarter

o)
Earth

FIGURE 1.42. Aristarchus’s use of the lunar
quadrature.

appear to shift with respect to one another as the Earth moves. Because the
constellations do not show any changes in the course of the year, Aristarchus
realized that radius of the sphere of stars must be vastly greater than the radius
of the Earth’s orbit. (The annual parallax does, indeed, exist. But it is so
small—less than a second of arc, even for the nearest visible stars—thar it was
not detected until the nineteenth century.)

Aristarchus’s Sun-centered cosmology drew some unfavorable attention
from his contemporaries. For example, the Stoic philosopher Cleanthes of
Assos said that Aristarchus ought to be “indicted on a charge of impiety for
putting into motion the hearth of the universe.”'™ As far as we know, no
formal indictment was made. (But let us recall that Anaxagoras had gotten
into just such a legal scrape for calling the Sun a red-hot stone.) For the most
part, the Sun-centered cosmology was simply ignored. The lack of interest in
this far-fetched idea no doubt contributed to the failure of Aristarchus’s book
to be preserved. In any case, it is unlikely that Aristarchus worked out the
consequences in detail. There is no indication, for example, that he discussed
the consequences of the motion of the Earth for the apparent motions of the
other planets.

Avristarchus on the Sizes and Distances

While earlier writers had speculated on the sizes and distances of the Sun and
Moon, Aristarchus was the first to address this problem geometrically.

EXTRACT FROM ARISTARCHUS OF SAMOS
On the Sizes and Distances of the Sun and Moon
[Hypotheses:]

1. That the Moon receives its light from the Sun.

2. That the Earth is in the relation of a point and center to the sphere
in which the Moon moves.

3. That, when the Moon appears to us halved, the great circle which
divides the dark and the bright portions of the Moon is in the
direction of our eye.

4. That, when the Moon appears to us halved, its distance from the
Sun is less than a quadrant by one-thirtieth of a quadrant.

5. That the breadth of the [Earth’s] shadow is [that] of two Moons.

6. That the Moon subtends one fifteenth part of a sign of the zodiac.

We are now in a position to prove the following propositions:

1. The distance of the Sun from the Earth is greater than eighteen times,
but less than rwenty times, the distance of the Moon [from the Earthl];
this follows from the hypothesis about the halved Moon.

2. The diameter of the Sun has the same ratio [as aforesaid] to the
diameter of the Moon.

3. The diamerer of the Sun has to the diameter of the Earth a ratio
greater than that which 19 has to 3, but less than that which 43 has
to 6; this follows from the ratio thus discovered between the distances,
the hypothesis about the shadow, and the hypothesis that the Moon
subtends one fiftcenth part of a sign of the zodiac.'”

Ratio of the Distances The first of the astronomical conclusions to be proved
is that the Sun is between eighteen and twenty times farther away from us
than the Moon is. Refer to figure 1.42. O'is the Earth, which may (by hypothesis
2) be considered a mere point. M is the Moon art the time of quarter Moon,
when we see it divided exactly in half. § is the Sun. From hypothesis 3, it
follows that the Sun’s ray SM must then be perpendicular to OM.



Now, by hypothesis 4, the angular distance between the Sun and the Moon
as we observe them in the sky at the time of quarter Moon (angle SOM) is
87°. Aristarchus, writing before the degree was in use among the Greeks, says
“less than a quadrant by one-thirtieth of a quadrant,” that is, less than 90°
by 3°, which is 87°. Thus, angle OSM must be one thirtieth of a quadrant,
or 3°. Aristarchus, working before the invention of trigonometry, proves by
one geometrical construction, following the methods of Euclid, that side OS
is more than 18 times greater than side OM. By another construction he proves
that OS is less than 20 times OM. We can apply trigonometry to solve the
problem much more easily:

OM = OS sin(OSM) = OS sin(3°)
Thus, OS =19.1 OM. The Sun is nineteen times farther away than the Moon.

Relative Sizes of the Sun and Moon  Aristarchus next uses the fact that the Sun
and Moon have the same angular diameter, as is clear from the phenomenon of
the total solar eclipse (see fig. 1.43). According to Aristarchus, the Moon
exactly covers the disk of the Sun. There is no ring of uncovered Sun, which
proves that the angular diameter of the Moon is not smaller than that of the
Sun. Moreover, the total eclipse does not last for any appreciable time, which
proves that the angular diameter of the Moon is not greater than that of the
Sun. Therefore, in figure 1.43, half the Moon and half the Sun subtend the
same angle 0. So, if OW is between 18 and 20 times OU, then WX is between
18 and 20 times UV. In other words, the Sun is between 18 and 20 times
larger than the Moon.

Absolute Sizes of the Sun and Moon  Aristarchus next works out the absolute
sizes of the Sun and Moon, in terms of the size of Earth. His demonstration
is based on a diagram for a lunar eclipse (fig. 1.44). We shall follow a simpler
geometrical argument than the one Aristarchus gives and shall also take advan-
tage of modern trigonometry. But the basic method and the final results are
Aristarchus’s.

As a preliminary, we introduce the concept of horizontal parallax. Refer
to figure 1.45. An observer at A on the surface of the Earth sees a celestial
body B (the Moon, say) on his horizon. A fictitious observer at the center C
of the Earth would see B a little higher in the sky. The angular difference
between the two lines of sight is called the horizontal parallax, marked P in
the figure. The distance 4 of the object from the center of the Earth is related
in a simple way to the horizontal parallax:

sin P = #d,

where 7 is the radius of the Earth. Thus, if the horizontal parallax of the
object is small, the distance of the object is great. (The horizontal parallax
should not be confused with the annual parallax mentioned earlier. The
horizontal parallax involves shifts in our point of view as we move about on
the Earth. The annual parallax involves shifts in our point of view as the
Earth moves around the Sun.)

Now let us take up the eclipse diagram (fig. 1.44). GH is the path of the
Moon through the shadow during a lunar eclipse. ¢ and T are the angular
radius of the Sun and of the shadow, respectively. For an observer at A, both
the edge of the Sun and the edge of the shadow are on the horizon. Thus,
P is the horizontal parallax of the Sun and Py is the horizontal parallax of
the Moon.

In figure 1.44, G + T = 180° — angle XCH. But the three angles in triangle
XCH must add to 180°%; thus, Py, + Ps = 180° — angle XCH. Combining the
two results,
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FIGURE 1.43. Aristarchus’s use of the solar
eclipse.
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FIGURE I.44. Aristarchus’s use of the lunar
eclipse.
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FIGURE 1.45. Horizontal parallax. Angle P is
the horizoneal parallax of a celestial object (such
as the Moon) located at B.
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C+T:PM+P5.

This is the relation on which we will base the remaining work.

We know the Sun is abour 19 times farther away than the Moon is. (We
will dispense from now on with Aristarchus’s “greater than eighteen . . . but
less than twenty times.”) It follows that the Moon’s horizontal parallax is
about 19 times greater than the Sun’s. That is, Py = 19 Ps. So,

G+1T=20 P

By hypothesis s, the breadth of the Earth’s shadow is two Moons. From figure
1.29, this seems plausible. Thus, T = one angular diameter of the Moon.
According to hypothesis 6, the Moon’s angular diameter is one-fifteenth of
a sign (a sign being 30°). Thus, T = 2°.

Since Aristarchus argues that the Sun and the Moon have the same angular
diameter, 6 (which is half the Sun) = 1°.

When these values for 6 and T are substituted into the preceding équation,
we obtain a numerical value for the Sun’s parallax:

The Moon’s parallax is 19 times larger:

57° 17°
P _— = —_—
M 20 z 20

The distances of the Sun and Moon may now be calculated from the
parallaxes:

ds = ¢/sin Ps, dM = r/sin PM-
As before, r denotes the radius of the Earth. Thus,
ds = 382 Farth radii; dj = 20.1 Earth radii.
These are the absolute distances of the Sun and Moon. Aristarchus does not
actually give values for these distances. But these are the values that result
from his premises.
To find the actual diameter of the Sun, note that in figure 1.43,
diameter of Sun =2 (WX) =2 OWsin o = 2 4 sin 0.

According to Aristarchus, o = 1°, so

diameter of Sun = 2 (382 Earth radii) sin 1° = 13.3 Earth radii, or
= 6.67 Earth diamerers.

Aristarchus’s actual result, quoted above, is that the diameter of the Sun is
berween 19/3 and 43/6 Earth diameters, that is, berween 6.33 and 7.17 Earth
diameters. In a similar way, we may calculate from Aristarchus’s data that

diameter of Moon = ¢.351 Earth diameters.

Aristarchus’s actual result is that the diameter of the Moon is between 43/108
and 19/60 Earth diameters, that is, berween 0.398 and 0.317 Earth diamerers.



To sum up, Aristarchus found that the Sun is about 19 times farther away
than the Moon, that the diameter of the Sun is about 6.67 Earth diameters,
and that the diameter of the Moon is about 0.351 Earth diameters.

Critique of Aristarchus

Aristarchus’s demonstrations were a brilliant application of mathematics to a
cosmological problem. The results, in their general drift, are also admirable:
the Sun and Moon are very far away; the Moon is a bit smaller than the
Earth; the Sun is considerably larger than the Earth. While earlier philosophers
had speculated about the sizes of the Sun and Moon, Aristarchus showed that
they could be measured.

However, there are some puzzles surrounding Aristarchus’s data. Most
glaring is his use (hypothesis 6) of 2° for the angular diameter of the Moon.
In fact, the Moon is four times smaller than this—about 1/2°. It takes little
effort to get a good value for the angular diameter of the Moon. It seems that
Aristarchus made no measurement at all, but simply made this figure up for
the purposes of demonstration. In Greek astronomy of the third century B.c.,
the method was still considered more important than the actual numbers.
Interestingly, Archimedes tells us in the Sand Reckoner that Aristarchus “discov-
ered that the Sun appeared to be about 1/720th part of the circle of the zodiac,”
that is, 1/2°.*° Thus, Aristarchus may actually have made a measurement,
presumably after having written his treatise.

The statement (hypothesis s) that the Earth’s shadow is exactly twice as
wide as the Moon is, by contrast, a good round value. However, the shadow
is actually a bit wider. In Almagest V, 14, Prolemy says that the shadow is 2
3/s times the width of the Moon. The reader can make an independent
estimate by using figure 1.29.

Let us see what results from these two improved values. We leave all of
Aristarchus’s other hypotheses unchanged. & (half the angular diameter of the
Sun) is then 1/4°. The whole diameter of the shadow is 2 3/5 X 1/2° = 13/10°.
Thus, T (half the shadow) is 13/20°. If we purt these values for 6 and 7 into
the fundamental equation (and continue to assume that Py = 19 P5), we find

1

Distance of Sun 1,273 Earth radii.
Distance of Moon = 67 Earth radii.
Diameter of Moon = 0.292 Earth diamerters.
Diameter of Sun = 5.55 Earth diameters.

The distance and diameter of the Moon are now close to the truth. (The
actual mean distance of the Moon is about 60 Earth radii. The actual diameter
of the Moon is about 0.273 Earth diameters.) But the size and the distance
of the Sun are still too small by a factor of 20. Thus, while Aristarchus’s
method could, with a little effort at more realistic measurements, yield good
values for the size and distance of the Moon, it was incapable of yielding
good values for the size and distance of the Sun.

The problem was hypothesis 4, that the angle between the Sun and the
quarter Moon is 87°. This leads to the conclusion that the Sun is 19 times
farther from us than the Moon is. In fact, the Sun is about 389 times farther
from us than the Moon is. From this it follows that, at quarter Moon, angle
SOM in figure. 1.42 is 89°s1'—less than a right angle by only 9’. Even several
centuries later, when Greek observational astronomy reached its peak, nobody
could measure angles to a precision of 9’. Moreover, the required measurement
was a very difficult one. Many historians have pointed out that it is impossible
to judge the exact moment when the Moon reaches quadrature, and that it
is also difficult to measure the angular distance between the centers of extended
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Cc

FIGURE 1.46. The Moon’s path about the
Earth O in the course of a synodic month. The
Sun is at S.

bodies like the Sun and Moon. The brightness of the Sun posed additional
problems—as well as risks for the vision of the observer.

However, hypothesis 4 was probably not the result of any measurement
at all. Rather, Aristarchus simply made up the value less than a quadrant by
one-thirtieth of a quadrant. This was probably a conjectural value based on
the following considerations. The time from new Moon to new Moon is
about 30 days. In figure 1.46, O is the Earth, and S is the Sun. 4, B, C, and
D represent the Moon’s positions at new Moon, first quarter, full Moon, and
third quarter, respectively. It is clear that arc BCD is greater than arc DAB,
and thus that the month is divided into unequal parts by the quarter Moons.
These two parts of the month cannot be as different as 16 days and 14 days,
for then the excess would be apparent to us all. Let us suppose, therefore,
that the time from first quarter to third quarter (arc BCD) is 15 /2 days and
that the time from third quarter to first quarter (DAB) is 14 1/2 days. The
Moon then runs arc DA in one half of 14 /2 days, that is, in 7 /4 days. But
the Moon takes 7 1/2 days to run a quadrant of the circle (since it takes 30
days for the whole citcle). Thus, arc DA is less than a quadrant by /4 day’s
worth of motion. One day’s worth of motion is 4/30 of a quadrant (4 quadrants
in 30 days). Thus, /4 day’s worth of motion is 1/30 of a quadrant. In short,
arc DA is less than a quadrant by 1130 of a quadrant. It looks as if Aristarchus
arrived at hypothesis 4 by simply assuming the largest imperceptible inequality
between the two portions of the month.

Aristarchus’s successors soon arrived at accurate values for the size and
distance of the Moon. But none of them made any substantial improvement
on the values for the size and distance of the Sun. Why not? The answer lies
in a property of the relation

G+T=PM+P5,

derived from the eclipse diagram. The left side of this equation contains two
quantities {angular radii of the Sun and shadow) that are relatively easy to
measure. The right side contains one quantity (horizontal parallax of the
Moon) that is hard to measure and one (horizontal parallax of the Sun) that
actually was impossible to measure by the methods available to the Greek
astronomers. Only the sum of the two parallaxes is easily determined: it must
be equal to 6 + 7. The fundamental problem is deciding how to divide the
total of the parallaxes between the Sun and Moon. Some other fact of observa-
tion must be introduced. Aristarchus used a value for the separation of the
Sun and Moon at quarter Moon (fig. 1.42) to argue that, in modern langauge,
Py = 198 But, suppose we give all of the total parallax to the Moon and
nothing to the Sun. That is, suppose we assume that Ps = 0 and that Py =
G + 1. This only makes about a % difference in the Moon’s parallax and
thus brings the Moon about % closer to the Earth. But giving the Sun a
parallax of zero pushes the Sun out to infinity. So we can make huge changes
in our estimate of the Sun’s distance without affecting the Moon’s distance

very greatly.

Later Measurements

Aristarchus’s eclipse diagram remained a central feature of later efforts to
improve the values for the sizes and distances of the Sun and Moon. However,
the later astronomers, notably Hipparchus and Ptolemy, sensibly abandoned
the method of the lunar quadrature. This meant they were obliged to introduce
an additional fact of observation.

Hipparchus (second century 8.c.) wrote a work on the sizes and distances,
but it has not come down to us. However, some information about Hippar-
chus’s method is preserved in Prolemy’s Almagest and in the commentary



on the Almagest written by Pappus (third century a.p.). In one calculation,
Hipparchus attempted a direct assessment of the Moon’s parallax. He made
use of information about a solar eclipse (probably that of March 14, 189 B.C.):
the Sun was seen totally eclipsed near the Hellespont, but only four-fifths of
its diameter was eclipsed at Alexandria. Assuming then that the Sun'’s parallax
was zero, Hipparchus was able to take one-fifth of the Sun’s angular diameter
as the lunar parallax between the Hellespont and Alexandria. We do not know
the details of his procedure, but he arrived at 71 and 83 Earth radii as the
Moon’s least and greatest distances.'” (The distance of the Moon varies slightly
in the course of the month.)

In another calculation, Hipparchus made use of the eclipse diagram and
simply assumed that the horizontal parallax of the Sun was 7, which he
perhaps took to be the largest imperceptible parallax. He took the angular
diameter of the Moon at mean distance to be 1/650 of a circle (33'14”), and
the diameter of the shadow to be 2 1/2 times that of the Moon. This leads
to a figure of 67.2 Earth radii for the Moon’s mean distance. Hipparchus’s
methods allowed him to home in on sound values for the distance of the
Moon, and in this he made a considerable improvement over Aristarchus.
But it is clear that he had doubts about the possibility of obtaining a reliable
value for the Sun’s distance.

Ptolemy, in Almagest V, devotes a good deal of effort to the sizes and
distances. Ptolemy attempts a direct measurement of the Moon’s parallax by
comparing the Moon’s position as observed at Alexandria with a theoretical
value for the Moon’s position computed from his lunar theory. With the
Moon’s parallax thus in hand, together with his own values for the angular
diameters of the Moon, Sun, and shadow, he uses the method of the eclipse
diagram to get the distance of the Sun. Ptolemy’s results are

Mean distance of Moon at new or full Moon= 59 Earth radii.
Mean distance of Sun = 1,210 Earth radii.
Diameter of Moon = 0.292 Earth diameters.
Diameter of Sun = 5.5 Earth diameters.

Ptolemy shows much originality. For example, he attempts to improve on
the measurement of the angular size of the shadow by means of a clever
technique of comparing two lunar eclipses of different degrees of totality.
Nevertheless, when he is all done, his ratio of solar to lunar distance is 1210/
59 = 20.5, very close to the traditional ratio handed down by Aristarchus.
Ptolemy’s figures were destined to have a great influence. There were a few
minor adjustments by medieval writers, but Ptolemy’s values were never
substantially changed. The 20-to-1 ratio between the Sun’s and the Moon’s
distance was not called seriously into question until the seventeenth century.

1.18 EXERCISE: THE SIZES AND DISTANCES
OF THE SUN AND MOON

1. Measure the angular diameter of the Moon, using the method described
in section 1.16. Assume that the angular diameter of the Sun is the same
as that of the Moon. This is justifiable since, at the time of a solar
eclipse, the Moon often appears to just cover the Sun’s disk. Aristarchus
assumed the same.

2. Use the photograph of the lunar eclipse of July 16, 1981 (fig. 1.29), to
determine how many times larger than the Moon the shadow is. To do
this, use a drawing compass. Find, by trial and error, the center of the
shadow. Measure with a ruler on the photo the diameter of the shadow
and of the Moon.
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n

. Take Aristarchus’s result, that the Sun’s distance is 19 times the Moon’s

distance, as given. Use the method of the eclipse diagram (¢ + 1 = P
+ Py) to determine the solar parallax:

A. First, take 6 from your own measurement of the Moon’s angular
diameter in step 1, by assuming that the angular diameter of the Sun
is the same as that of the Moon.

B. Combine your results from steps 1 and 2 to determine 7.

C. Note that Py = 19 Ps according to Aristarchus.

D. Finally, find Ps.

. Use the result of step 3 to determine the Sun’s distance, in terms of

Earth radii.

. Find the Moon’s distance in terms of Farth radii.
. Find the actual diameter of the Sun in terms of Farth diameters. To

do this, combine the results of steps 1 and 4.

. Find the actual diameter of the Moon in terms of Farth diameters.



2.1 THE SPHERE IN GREEK ASTRONOMY

Basis in Observation

To a naive observer it is by no means obvious that the sky has the shape of
a dome or hemisphere. Indeed, the Egyptians in their art often represented
the sky by the sky goddess, Nut, arched over the land, often, though not
always, with her back flattened (see fig. 2.1). And the Egyptian hieroglyph for
sky (XV) is reminiscent of the flat roof of a long, low building.1

Although the stars themselves suggest no particular shape for the heaven,
their motions do suggest a sphere: the Moon, stars, and planets are seen
moving on parallel circles, climbing up together from the eastern horizon,
crossing the sky, and going down together in the west. Even more suggestive
are the circumpolar stars, which can be seen all night long, moving in circles
about the celestial pole. Prolemy pointed to exactly these facts of observation
in trying to explain how his remote predecessors had come to the idea of a
spherical heaven.?

“The heaven is spherical and moves spherically.” This is the most fundamental
assumption of Greek astronomy. Many Greek astronomical texts begin with
it or something like it.* Although this view often was supported with arguments
of a philosophical or even mystical nature, it is actually suggested by observation
of the sky. Aristotle regarded the sphere of the fixed stars as a real, material
sphere, and all later astronomical writers, including Ptolemy, followed him
in this.

Eudoxus and Aratus on the Sphere

The idea of a spherical cosmos can be attributed to sixth- and fifth-century
B.c. philosophers such as Pythagoras and Parmenides. But the first figure in
whom we see a clear and complete understanding of the celestial sphere is
Eudoxus of Cnidus (ca. 370 B.c.). Eudoxus was the author of a number of
astronomical works, including a star calendar and a treatise on the eight-year
luni-solar cycle. He is the likely, if unproved, source of the earliest known
measurement of the circumference of the Earth, mentioned in passing by
Aristotle in On the Heavens. Among his other writings, Eudoxus is known to
have composed two books on the celestial sphere, called the Phenomena and
the Mirror. These books, which apparentdy differed little from one another,
contained systematic descriptions of the constellations and their relative posi-
tions on the sphere.

Not one of Eudoxus’s works has survived. But in the case of the Phenomena
we have a paraphrase of one of them, for Eudoxus’s description of the night
sky inspired the poet Aratus of Soli to produce a versified version abourt a
century later. The verse Phenomena of Aratus proved to be very popular:
commentaries were written on it, it was on several occasions translated into
Latin, and it even inspired sculptors and other artists to treat astronomical
themes. Among the many commentators on Aratus was Hipparchus of Bithynia
(ca. 150 B.C.), the most creative astronomer of the Hellenistic age. Hipparchus
still had access to Eudoxus’s original prose Phenomena. In his Commentary
Hipparchus makes a painstaking examination of the works of his two predeces-
sors. Often, he finds them inexact or mistaken about positions of the stars
and constellations. Hipparchus tells us, however, that we ought not blame
Aratus, who was a poet and not an astronomer, and who was in any case only
following Eudoxus, but Eudoxus, as an astronomer, must be held accountable
for the errors.” Hipparchus makes Aratus’s dependence on Eudoxus clear by
quoting parallel passages from the two versions of the Phenomena. Thus,
although Eudoxus’s Phenomena has not come down to us, we may safely
assume that its astronomical content is reflected in the poem of Aratus.
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FIGURE 2.2. The celestial sphere and the signs

of the zodiac.

Symbol  Greek

Y Krios

hel Tauros

T Didymoi
gs Karkinos
& Leon

(1% Parthenos
a Zygos

m Skorpios
e Toxotés
Yo Aigokeros
s Hydrochoss
Al Ichthyes

Latin

Aries
Taurus
Gemini
Cancer
Leo

Virgo
Libra
Scorpius
Sagittarius

Capricornus

Aquarius

Pisces

English

Ram

Bull

Twins

Crab

Lion

Virgin

Balance

Scorpion

Archer

Goat-Horn[ed
creature]

Water-Pourer

Fishes

Aratus begins with descriptions of the constellations and their positions
on the sphere, along with stories and legends about them. Then he briefly
describes the four principal circles of the celestial sphere: equator, zodiac, and
the two tropic circles.’ The image that emerges can be represented as in figure
2.2. Girding the celestial sphere are the three parallel circles of the equator
and the two tropic circles. The fourth important circle is the slanted zodiac,
which lies athwart the tropics. Although the Greek heaven of figure 2.2
still bears mythological images, it represents a radical break with traditional
cosmologies, typified by the Egyptian images in figure 2.1. In introducing the
theory of the celestial sphere, the Greeks took a decisive step toward geometriz-
ing their worldview.

Aratus goes on to list the constellations that lie on each of the four circles.
The northern tropic circle passes through the heads of the Twins (Gemini)
and the knees of the Charioteer (Auriga), passes just below Perseus, but straight
across Andromeda’s right arm above the elbow. Also lying on the northern
tropic are the hoofs of the Horse (Pegasus), the head and neck of the Bird
(Cygnus), and the shoulders of Ophiuchus. The Virgin (Virgo) is a little south
of the tropic and does not touch it, but both the Lion and the Crab (Cancer)
are squarely on it. This detailed description would enable the reader to visualize
the tropic of Cancer in the night sky. Aratus gives similar lists of the constella-
tions lying on the equator and tropic of Capricorn. For the zodiac—the fourth
major circle—the list consists of the familiar twelve zodiacal constellations.

A note on terminology: it is important to distinguish between zodiac and
ecliptic. The Greek astronomers thought of the zodiac as a band of finite
width, as in figure 2.2, rather than as a vanishingly thin circle. The circle that
runs down the middle of this zodiacal band is the ecliptic (the Sun’s path),
which the Greeks called zhe circle through the middles of the signs. The Moon
and the planets move neatly along the ecliptic, but the Moon may wander
north or south of it by as much as §°. The maximum laticudinal wanderings
of the planets range from about 2° in the case of Jupiter to about 9° in the
case of Venus. The zodiac was conceived of as a band wide enough to en-
compass these wanderings.

Fundamental Propositions of Greek Astronomy

From the time of Eudoxus on, Greek astronomy was based on five fundamental
propositions:

. The Earth is a sphere,

. which lies at the center of the heaven,

. and which is of negligible size in relation to the heaven.

. The heaven, too, is spherical

. and rotates daily about an axis that passes through the Earth.

MR W N M

We have discussed propositions 4 (sphericity of the heaven, in the present
section) and 1 (sphericity of the Earth, in sec. 1.9). In section 1.6, we examined
the ancient debate over proposition § (rotation of the heaven). In considering
the two remaining propositions, we will examine some of the arguments
offered by Ptolemy in Almagest 1.

Thar Earth Is in the Middle of the Heaven Suppose, says Ptolemy, that the
Earth is not at the center of the celestial sphere. Then it is either

(a) off the axis of the sphere but equidistant from the poles,
(b) on the axis but farther advanced toward one of the poles, or
(c) neither on the axis nor equidistant from the poles.

Let us examine case (a). In figure 2.3, the Earth lies off the axis of the celestial
sphere, but at equal distances from the two celestial poles. In this case there



will be trouble with the equinoxes. Let an observer be at A on the Earth’s
equator, with horizon YAW. At the time of the equinox, the Sun lies on the
celestial equartor and therefore runs around circle WXYZ in the course of one
day. The observer at A will see the Sun above the horizon only for the short
time the Sun requires to run arc YZW, and the Sun will be below for the
long time it takes to travel arc WXY. Burt this contradicts the observed fact
that, at equinox, the period of daylight is equal to the period of darkness at
all places on Earth.

Now consider case (b), in which the Earth is on the axis of the universe
but nearer one of the poles. Then everywhere (except at the Earth’s equator)
the plane of the horizon will cut the celestial sphere into unequal parts, which
is contrary to observation, since one half of the sphere is always found above
the horizon (fig. 2.4). And it is not possible to advance to case (c) since the
objections to (a) and (b) would apply here also.

That the Earth Is a Mere Point in Comparison with the Heaven In the first
place, says Ptolemy, if the Earth had an appreciable size compared with the
celestial sphere, the same two stars would appear, to observers at different
latitudes, to have different angular separations. For example, in figure 2.5,
observers at D and F will measure different angular separations between the
stars F and G. That is, angles FDG and FEG are not the same. Further, star
G will appear brighter to the observer at £ than to the observer at D. But all
of this is in contradiction to the facts, for the stars actually appear the same
in the different latitudes.

Second, the tips of shadow-casting gnomons can everywhere play the role
of Earth’s center, which could not be the case if the Earth had any appreciable
size. For example, as in figure 2.6, let gnomon AB be perpendicular to the
terrestrial meridian CG. At noon on the winter solstice, the Sun is at / and
produces the shadow BD; at noon on the equinox, the Sun is at 7and produces
shadow BF; and finally, at summer solstice, the Sun, at /, produces shadow
BF. Now, at any place whatever on the Earth it is found that angle JAI =
angle JAH, roughly 24°. Thus, the tip A of the gnomon may always be taken
as the center of the sphere of the Sun’s motion. But if this is true everywhere,
the Earth must be very small compared to the celestial sphere. The fact that,
for any place on Earth, the tip of the gnomon can be treated as the center
of the cosmos would have been familiar to any of Ptolemy’s readers who had
studied the techniques of constructing sundials. We make use of this fact
ourselves, in section 3.2, where we study the construction of Greek and Roman
sundials.

We have expanded some of Ptolemy’s arguments and illustrated them with
figures for the sake of greater clarity. These arguments were not, however,
original with Ptolemy, since some of them were used by earlier writers,
for example, Euclid and Theon of Smyrna. Indeed, the essential arguments
concerning the heaven and the Earth’s place within it were already hundreds
of years old by the second century a.D., when Ptolemy wrote. Ptolemy merely
presented the case with greater thoroughness and organization. These argu-
ments remained the common stock of all astronomers down to the Renaissance.

Critique of the Ancient Premises In general, the Greek astronomers believed
in the literal truth of all five propositions. In an introductory astronomy
course, the teacher would probably have marched his students through the
five propositions, giving ample proofs of each, the proofs being based not only
on appeals to observation but also on physical and philosophical argument.

But from our perspective, while some of these propositions may be regarded
as rigorously proved, others only reflect a point of view. In particular, proposi-
tions 1 and 3 (sphericity and smallness of the Earth) are not only provable
but actually were proved in antiquity. Proposition 2, which places the Earth
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at the center of the heaven, rests partly on empirical evidence and is partly
conventional. Certainly, the axis of the daily rotation must pass through rhe
Earth. But, granted this, as long as the stars arc very far away, it can make
no difference whether the Earth is exactly in the middle of things or not.
Every observer, whether on the Earth, the Moon, or Jupiter, can legitimately
treat his or her own home as the center of the universe (as far as appearances are
concerned). Proposition 4, that the heaven is spherical, is wholly conventional.
Because the stars are very far away from us, it makes no difference whether
they all lic on a single spherical surface or not. But we will not get into trouble
by assuming that they do. Proposition § also reflects a point of view. We may
say with equal validity that the heaven rotates once a day from east to west
or that the Earth rotates from west to east.

FIGURE 2.5,

! 2.2 SPHAIROPOIIA: A HISTORY OF SPHERE-MAKING

A Some Representative Globes and Armillary Spheres

The most ancient known celestial globe is a large stone sphere supported by
¢ 5 E 7 e G a statue of Atlas, in the Museo Nazionale at Naples. This statue, transferred
to its present location from the Farnese Palace in Rome, is called the Farnese
Atlas. The globe is a Roman copy (first or second century 4.p.) of a Hellenistic
original made perhaps several centuries earlier.

The Farnese globe is shown in figure 2.7. The Earth, not represented,
would be a tiny sphere located inside the celestial sphere. Part of the globe
is obscured by the hand of the statue of Adas that supports it. In figure 2.7,

FIGURE 2.6.

FIGURE 2.7. The Farnese globe. This ancient
marble celestial sphere was supported by a statue
of Aclas, whose hand is visible on the globe. :
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the zodiac belt is the triplet of rings arching across the upper part of the
globe. (The ecliptic is the middle of the three rings.) On the zodiac are several
familiar constellations: (1) Taurus, (2) Gemini, (3) Cancer, and (4) Leo. A
number of nonzodiacal constellations may also be seen: (6) Canis Major, (7)
Argo, (8) Hydra, (9) Crater, (10) Corvus, and (15) Auriga. Celestial circles
represented on the Farnese globe include the celestial equator CD, the tropic
of Capricorn EF, the tropic of Cancer OK; and the solstitial colure AB. (The
solstitial colure is a great circle that passes through the celestial poles and the
summer and winter solstitial points.)

In the placement and representation of the constellations, the globe is
consistent with the descriptions of the sky in the Phenomena of Aratus. For
example, the constellation Hercules is, in Aratus, simply called the Kneeling
Man. (The identification with the hero came after Aratus’s time.) Hercules
is usually depicted carrying a club and a lion’s skin, which is not the case
with the Kneeling Man on the Farnese globe.

The Farnese globe was, of course, a display piece and not a usable globe.
Figure 2.8 shows one of the oldest known portable globes, from medieval
Islam.” Although no portable globe (of the type suitable for teaching) has
come down to us from Greek times, we know that they were fairly common.
Geminus, the author of an introductory astronomy textbook (Zntroduction to
the Phenomena, first century A.p.), refers to celestial globes in several passages
and clearly expected his readers to be familiar with them. Moreover, globes
appear in Greek and Roman art, for example, on coins and on murals. (See
fig. 5.13 for a coin from Roman Bithynia that shows Hipparchus seated before
a small celestial globe.)

Prolemy (Almagest V111, 3) gives detailed directions for building a celestial
globe. He says it is best to make the globe of a dark color, resembling the
night sky, and gives directions for locating the stars on it. The stars are to be
yellow, with sizes that correspond to their brightnesses. A few stars, for example,
Arcturus, that appear reddish in the sky, should be painted so. The globe
described by Ptolemy was of unusual sophistication, for it was fitted with a
stand that allowed the user to duplicate not only the daily rotation about the
poles of the equator, but also the slow precession about the poles of the
ecliptic.

Similar to the celestial globe, but easier to construct, is the armillary sphere,
in which the heavens are represented not by a solid ball but by a few rings
or bands which form a kind of skeleton sphere. (“Armillary” from the Latin
armilla, arm-band, bracelet.) This model emphasizes the various circles in the
sky that are associated with the Sun’s motion. Figure 2.9 shows a Renaissance
illustration of an armillary sphere.

Uses of the Globe

With either a globe or an armillary sphere it is possible to reproduce a variety
of astronomical events—the risings and settings of stars, the annual solar cycle,
and so on. One can make apparent in a moment what would require months
to observe in the sky, so the models can be used to supplement, or even
replace, real observation in the teaching of astronomy.

Even after the development of spherical trigonometry (by the end of the
first century A.D.), concrete models continued to serve as aids to visualization
and understanding. Indeed, if one desires only numerical answers (rather than
mathematical formulas), and if one does not insist that these numbers be very
precise, one can perform all the trigonometric “calculations” necessary to
astronomy by manipulating a concrete model. A well-made celestial globe or
armillary sphere is a kind of analog computer.’

These models were also aids in the discovery of the world. Many facts
about the Earth are read directly on the celestial globe: the existence of a
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FIGURE 2.8. An Arabic celestial globe (Oxford,
Museum of the History of Science). The stars
are represented by inlaid silver disks, with sizes
corresponding to the magnitudes of the stars.
The globe is pierced by holes at the poles of the
equator and at the poles of the ecliptic. (There
is a third pair of holes whose function is not ob-
vious. Perhaps they were drilled by mistake.) A
series of holes in the stand permits adjustment
of the axis of rotation for geographical latitude
at increments of 10°. The inscription informs us
that the globe was made in A1 764 (a.D. 1362/
1363) and that the maker of the globe took the
star positions from the Book of the Constellations
of al-Stfi. Ursa Major may be seen, upside
down, near the middle of the globe. The
Pointers point at the middle hole, which is the
pole of the equator. (Compare with fig. 1.15.)



80 THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

FIGURE 2.9. An armillary sphere. From
Cosmagraphia . . . Petri Apiani & Gemmae Frisii
(Antwerp, 1584). Courtesy of the Rare Book
Collection, University of Washington Libraries.
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midnight Sun in the extreme northern and southern latitudes, “days” of six
months at the poles, the existence of a tropical zone in which the Sun sometimes
stands at the zenith, and the reversal of the seasons in the southern hemisphere.
All these facts of geography can be demonstrated with the celestial globe.
These facts about the Earth were discovered through thought and not by
exploration.

Armillary spheres were common teaching tools in Greek antiquity, and
they are mentioned as such by Geminus. But if an armillary sphere is made
well enough, and large enough, and equipped with sights, it can also function
as an instrument of observation. It can be used, for example, to measure the
celestial coordinates of stars or planets in the night sky. By Prolemy’s time,
the armillary sphere had become the preferred instrument of the Greek astrono-
mers. (See fig. 6.8 for the instrument described by Prolemy in Almagest V, 1.)

History of Model-Making

According to Sulpicius Gallus,” Thales of Miletus (sixth century B.c.) was the
first to represent the heavens with a sphere. This would have been a solid
sphere on which stars were marked. Whether this sphere was made to turn
abourt an axis we do not know. Indeed, because most of what we know of
Thales is mere rumor and legend, it is far from certain that the celestial globe
really originated with him. Among the ancients, Thales’ name was a catcchword
for wisdom and learning and many discoveries were attributed to him that
really were made much later.



In any case, by the time of Plato (fourth century B.c.) such models must
have been fairly common. When Plato described the creation of the universe
by the craftsman-god in his T7maeus, he had in mind the physical image of
the universe provided by the armillary sphere. According to Plato, the crafts-
man-god first of all prepared a fabric from which he intended to construct
the world, and this fabric was made of world-soul. The craftsman-god

then took the whole fabric and cut it down the middle into two strips,
which he placed crosswise at their middle points to form a shape like the
letter X; he then bent the ends round in a circle and fastened them to each
other opposite the point at which the strips crossed, to make two circles,
one inner and one outer. And he endowed them with uniform motion in
the same place, and named the movement of the outer circle after the
nature of the Same, of the inner after the nature of the Different. The
circle of the Same he caused to revolve from left to right, and the circle of
the Different from right to left on an axis inclined to it; and he made the
master revolution that of the Same."

“Motion in the same place” means circular motion. The two intersecting
circles are, of course, the equator and the ecliptic. The daily motion from
east to west, shared by all the heavenly bofﬁes, is the “master revolution,” or
the revolution “of the Same,” and is associated with the equator. The ecliptic
partakes of the nature of the Different because the Sun, Moon, and planets
all tend to move in the contrary direction—from west to east—along this
circle. There is no doubt, then, that Plato’s conception of the universe owed
something to the concrete example of the armillary sphere. This is perhaps
the earliest example we have of something that has since become commonplace:
a successful scientific model or theory may affect our picture of the world
and cause shifts in religion and philosophy.

Farther on in the same discussion, Plato mentions the creation of the
planets and the motions with which god has endowed them. But he forswears
any detailed explanation of these motions, saying, “It would be useless without
a visible model to talk about the figures of the dance [of the planets],” which
again makes one think that models were in use by Plato’s time.

Eudoxus of Cnidus sought to explain this dance of the planets by a system
of nested spheres, turning about several different axes inclined to one another.
He was able in this way to reproduce fairly well the variations in speed, the
stationary points, and the retrogradations that are characteristic of the planets’
motions. Whether he made a concrete model to illustrate his theory is not
known. Eudoxus, who was a mathematician of the first order, would not have
needed mechanical aids, but such a model might have made discussion with
others easier. If it existed, the model of Eudoxus would have been the first
orrery. Such a device, which duplicates the motions of the planets, is much
more complicated than a globe or armillary sphere, which merely reproduces
the daily revolution of the celestial sphere.

In any case, sphairopoiia (“sphere making”)—the art of making models to
represent the celestial bodies and their motions—soon became an established
branch of mechanics and was carried to a high level by the time of Archimedes
(ca. 250 B.C.). According to Plutarch," this brilliant mathematician repudiated
as sordid and ignoble the whole trade of mechanics and every art that lent
itself to mere use and profit. Archimedes is famous for inventing machines
of all kinds—water screws, hoisting machines, and engines of war—but these
he is supposed to have designed not as mattegs of any importance but as mere
amusements in geometry. And so Archimedes did not “deign to leave be-
hind him any commentary or writing on such subjects” but “placed his
whole affection and ambition in those purer speculations where there can be
no reference to the vulgar needs of life.” Yet, he seems to have made an
exception in the case of sphere making, perhaps because it helps one attain
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FIGURE 2.10. A. A portable sundial and gear-
work calendrical calculator from the Byzantine
period (circa A.D. 500). Top: Conjectural recon-
struction of the back. A dial at the left indicates
the position of the Sun in the zodiac. A dial at
the right indicates the position of the Moon.
The window at the bottom indicates the phase
of the Moon. Bottom: Reconstruction of the
front. The suspension ring must be positioned
for the latitude of the observer. The sundial
vane must be adjusted for the time of year. The
user holds the dial vertically and turns it undil
the shadow of the gnomon falls on the scale of
hours engraved on the curved part of the vane,
indicating the time of day. The dial at the left
is to be turned one notch a day. The gear train
inside the device then advances the Sun and
Moon indicators by the appropriate amounts.
From Field and Wright (1984).

an understanding of divine objects. For, according to Pappus,” Archimedes
composed a special treatise on this subject, which is now lost. This book on
sphere making was the only work on mechanics that Archimedes judged
worthwhile to write.

That Archimedes actually made models of the heavens is beyond doubt,
for Cicero tells us that after the capture of Syracuse (212 B.c.) the Roman
general Marcellus brought two of them back to Rome. One was a solid celestial
globe, which Marcellus placed in the temple of Vesta, where all might go and
see it. This seems to be the same globe that Ovid mentions in these lines on
Vesta and her hall:

There stands a globe hung by Syracusan art

In closed air, a small image of the vast vault of heaven,
And the Earth is equally distant from the top and bottom.
That is brought about by its round shape.”

Ovid’s description of the sphere as an image of the heavens with the Earth
inside, equally distant from top and bottom, makes it sound more like a
hollow armillary sphere than the solid globe described by Cicero. Ovid wrote
these lines around A.p. 8, more than 200 years after the globe was brought
to Rome. And, although Ovid writes as if the globe still existed in his time, it
is possible that it did not and that he never saw it. Besides, Ovid’s astronomical
knowledge is often defective, so Cicero’s description is more to be trusted.”

According to Cicero, the second of Archimedes’ models was taken home
by Marcellus, “though he took home with him nothing else out of the great
store of booty captured.” Years later, it was shown by Marcellus’s grandson
to Gaius Sulpicius Gallus, who was evidently one of the few who understood
the workings of the machine. This second model,

on which were delineated the motions of the Sun and the Moon and of
those five stars which are called wanderers, or as we might say, rovers,
contained more than could be shown on the solid globe, and the invention
of Archimedes deserved special admiration because he had thought out a
way to represent by a single device for turning the globe those various and
divergent movements with their different rates of speed. And when Gallus
moved the globe, it was actually true that the Moon was always as many
revolutions behind the Sun on the bronze contrivance as would agree with
the number of days it was behind in the sky. Thus, the same eclipse of the
Sun happened on the globe as would actually happen. . .. "

This orrery of Archimedes must have been quite a marvel, for Cicero expresses
disapproval of some who “think more highly of the achievement of Archimedes
in making a model of the revolutions of the firmament than that of nature
in creating them, although the perfection of the original shows a craftsmanship
many times as great as does the counterfeit.”"®

Archimedes was not the only master of the art of sphere making, for Cicero
also mentions “the orrery recently constructed by our friend Posidonius, which
at each revolution reproduces the same motion of the Sun, the Moon and
the five planets that take place in the heavens every twenty-four hours.”
Cicero probably saw this device himself, for as a young man he had attended
Posidonius’s lectures in Rhodes, and again befriended him when the philoso-
pher came to Rome as ambassador from Rhodes in 87-86 B.c. But, alas,
Cicero gives us no dertails of the construction of this machine.

The orreries of Archimedes and Posidonius were intended primarily to
give a visual representation of the universe. But it is clear from Cicero’s
remarks that these two orreries also incorporated some quantitative features
of the planets’ motions—ar least their relative speeds along the zodiac. Two
related kinds of constructions can be mentioned here. One was the simple
cosmological model, which did not incorporate any quantitative features, but



which gave the viewer an overall visual impression of the arrangement of the
universe. For example, Theon of Smyrna'” tells us that he himself made a
model of the nested spindle-whorls cosmos described by Plato in the tenth
book of the Republic. This model would not have done much, but it did
illustrate Plato’s cosmology in a visually striking way.

Less visual, but more quantitative, was the gearwork calendrical computer.
Parts of two such devices have been discovered, one dating from the first
century 8.c."" and one from the fifth or sixth century a.0.” The user was
expected to turn a wheel through one “click” each day. A gearwork mechanism
then advanced indicators showing the phase of the Moon and the position
of the Sun in the zodiac (see fig. 2.10).

The Place of Sphairopoiia among the Mathematical Arts

One should not take Archimedes’ disdain for mechanics as representative of
his time. By Archimedes’ time, mechanics not only was a useful trade, but
also had become a recognized genre of technical writing. Sphairopoiia, the
subdivision of mechanics devoted to models of the heavens, was also a recog-
nized specialty. Sphairopoiia included the construction of celestial globes, to
be sure. But, as we have seen, it also included the making of other kinds of
images of the heavens, such as models of the planetary system and mechanical
calculating devices intended to replicate features of the motions of the Sun,
Moon, and planets. Two recognized branches of astronomy proper were also
devoted to concrete constructions: gnomonics (the making of sundials) and
dioprrics (the design and use of sighting instruments).

The relation of these three arts to the rest of mathematical knowledge is
discussed by Geminus, a Greek scientific writer of the first century a.p.
Geminus wrote an elementary astronomy textbook (Intreduction to the Phenom-
ena) that has come down to us more or less intact. He also wrote a large book
on mathemartics, which contained a good deal of philosophy and history of
mathematics. This book has not come down to us. But much of its content
is summarized by Proclus in his Commentary on the First Book of Euclid’s
Elements. In his mathematical treatise, Geminus discussed the organization of
mathematical knowledge and the relation of its various branches to one an-
other. Geminus’s outline of the mathemarical sciences can be summarized
thus:

Organization of the mathematical sciences according to Geminus

+ Pure mathematics (concerned with mental objects only)
- Arithmeric (study of odds, evens, primes, squares)
+ Geometry
- Plane geometry
- Solid geometry
- Applied mathematics (concerned with perceptible things)
- Practical calculation (analogous to arithmetic)
+ Geodesy (analogous to geometry)
+ Theory of musical harmony (an offspring of arithmetic)
» Oprtics (an offspring of geometry)
+ Optics proper (straight rays, shadows, etc.)
+ Catoptrics (theory of mirrors, etc.)
+ Scenography (perspective)
+ Mechanics
+ Military engineering
+ Wonderworking (pneumatics applied to automata)
+ Equilibrium and centers of gravity
- Sphere making (mechanical images of the heavens)
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FIGURE 2.10. B. Portable sundial and gear-
work calendrical calculator from the Byzantine
period. Top: A modern reconstruction in metal.
Bottom: The extant portion of the gear train. At
the right can be seen the ratchet (the oldest
known ratchet), which prevented the user from
turning the day dial in the wrong direction.
Science Museum, London.
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+ Astronomy
+ Gnomonics {sundials)

heavens.

FIGURE 2.1I. A sixteenth-century brass armil-
lary sphere. Science Museum, London.

* Meteoroscopy (general astronomical theory)
- Dioptrics (instruments of observation)®

Mathematical knowledge is divided into the pure (which deals with mental
objects only) and the applied (which deals with perceptible things). Astronomy
is one among six branches of applied mathematics. Geminus was not alone
in making astronomy a part of mathematics, for this was the general view
among the Greeks. Prolemy, for example, always refers to himself as a mathema-
tician. Two of Geminus’s three subbranches of astronomy are concerned with
the construction and use of instruments: gnomonics and dioptrics. As Geminus
says, gnomonics is concerned with the measurement of time by means of
sundials, while “dioptrics examines the positions of the Sun, Moon, and the
other stars by means of just such instruments [i.e., dioptras].” As for sphere
making, Geminus makes it a part of mechanics, no doubt because it involves
the use of geared mechanisms and water power to activate its images of the

Some Reservations about Sphairopoiia

The purpose of sphairopoiia was to make immediately evident facts that could
otherwise demonstrated only by difficult geometrical argument or prolonged
observation of the skies. The danger of this method was thar the desire to
petfect the concrete mechanism would replace the taste for reflection and

observation and so would lead one away from real astronomy into simple
tinkering,. Plato had already criticized the geometers who made use of mechani-

cal devices to solve problems,” saying that this was the corruption and annihila-
tion of the one good of geometry, which ought to concern itself with the
contemplation of the unembodied objects of pure intelligence, rather than
with base material things. And Prolemy, the greatest astronomer of antiquity,
objected to traditional sphere making on the grounds that, in the majority
of cases, it only reproduced the appearances of things without troubling itself

over causes and gave proofs of its own technical accomplishment rather than
of the justice of astronomical hypotheses.22 Prolemy’s complaint probably was
justified, especially when applied to the orreries, which certainly had an air
of the marvelous and extravagant. But there is no doubt that the simpler
models—the armillary sphere and the celestial globe—played an important part
in the teaching of astronomy and even, in the early days of this science, in
fundamental research and discovery. Perhaps it was because he realized this
that Prolemy, in his Planetary Hypotheses, decided after all to give a summary
of ideas that might be useful to those who wish to make concrete models of

the cosmos.

A Renaissance Armillary Sphere

In the Renaissance, armillary spheres became enormously popular, and many
examples survive in museums.” In figure 2.11 we see a well-made, functional
model, suitable for instructional use. This armillary sphere is of sixreenth-
century German workmanship. The circles are of brass. The outside diameter
of the meridian is about 9 1/2 inches. This sphere has an interesting special
feature: it is equipped with rotatable auxiliary rings that allow markers repre-
senting the Sun and Moon to be moved and positioned at will along the
zodiac. The Sun and Moon markers may be seen on the inside of the zodiac

ring.



2.3 EXERCISE: USING A CELESTIAL GLOBE

Directions for Use of the Sphere

A usable celestial globe must have the following features: (1) a fixed horizon
stand, (2) a moveable meridian ring that allows the model to be adjusted for
the observer’s latitude, and (3) an axis of rotation. (These features are all
displayed by the Renaissance model in fig. 2.9.) If you use a solid celestial
globe, you should visualize the Earth as a geometric point, at rest at the center
of the sphere.

The four most important circles of the model are the horizon, the meridian,
the equator, and the ecliptic.

The horizon and the meridian are fixed circles that do not participate in
the revolution but form a base or stand for the revolving sphere. The borizon
ring represents the observer’s own horizon. Therefore, points of the sphere
that are above the horizon are visible, and those below, invisible. The horizon
should be marked all around at 5° or 10° intervals. On most horizon stands,
the cardinal points (north, east, south, and west) also are marked. These
markings enable one to tell in just what direction a given star rises or sets.

The meridian ring may be turned in the stand so that the elevation of the
celestial pole above the horizon may be varied. By this means the model may
be adjusted to give the appearance of the sky at any desired latitude. The
latitude of a place on Earth is equal to the altitude of the north celestial pole
(or arctic pole) ar that place.

The equator and the ecliptic both participate in the daily revolution of
the heavens. The equator is divided into hours. These marks may be counted
as they turn past the meridian ring to measure elapsed time. In other words,
the celestial equator, turning past the fixed meridian, constitutes a giant clock.
Thus, one may determine, for example, the time between the rising and setting
of a particular star. (Technically, the stars take about four minutes less than
twenty-four hours to complete a revolution. For most purposes this small
difference may be ignored.)

The ecliptic is the path that the Sun follows in its annual motion. On your
model, it may be marked in degrees of celestial longitude, or with the dates
on which the Sun reaches each point, or with both kinds of information.

If you are using a celestial globe, you will see that it is marked with
many stars. If you are using an armillary sphere, it may be marked with the
approximate positions of a few prominent stars that happen to lie on or near
one of the circles.

Example

Problem: What will an observer at 50° north latitude see the Sun do on
April 20?

Solusion: First set the meridian so that the arctic pole is 50° above the
north point of the horizon (as in fig. 2.9).

Then place the April 20 mark of the ecliptic on the horizon and find that
the Sun rises about 17° north of east. Note that the 19-hour mark of the
equator is now at the meridian. (This is, in modern parlance, called the sidereal
time of sunrise. The sidereal time is indicated by the hour mark of the equator
that is on the meridian above the horizon. Sidereal time is 7of the same as
ordinary clock time.)

Then turn the sphere until the April 20 mark reaches the western horizon
and note thar the 8 3/4 hour mark of the equaror is on the meridian. (Thus,
the sidereal time of sunset is 8 3/4 hours.) To find the length of the day,
subtract the sidereal time of sunrise from the sidereal time of sunset: the Sun
was above the horizon for 8 3/4 — 19 = 24 + 8 3/4 — 19 = 13 3/4 hours.
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A note on reckoning time intervals: In computing a time interval, the rule
is always (time of final event) — (time of initial event). So, to find the length
of the day, we compute sunset minus sunrise. If you subtract in the wrong
order, you will find the length of the night. If you cannot carry out the
subtraction because the first number is smaller than the number being sub-
tracted, you can always add 24 hours to the first number, as in ordinary clock
arithmeric.

Finally, place the Sun (the April 20 mark) at the meridian, simulating local
noon. Find that the Sun is 51° above the horizon.

In summary, on April 20, an observer at 50° north latitude will see the
Sun rise 17° north of east, cross the meridian s1° above the horizon, and set
17° north of west, 13 3/4 hours after it rose.

The Motion of the Sun

Use a celestial globe or an armillary sphere to investigate the behavior of the
Sun at different times of the year and at differenc latitudes. In parricular:

1. Make a graph of the alticude of the Sun at noon versus the date. Plot
at least one point for each thirty days over an entire year. You should
make three such graphs, for latitudes 0°, 35°, and 70°. Your graphs will
be more meaningful if you display them on a single sheet of graph
paper.

2. Make a graph of the rising direction (number of degrees north or south
of east) of the Sun versus the date for a whole year. Do this for each
of the same three latitudes.

3. Make a graph of the length of the longest day of the year (in hours)
versus latitude. Vary the latitude by 10° steps from o° to 90°. (This
graph has a historical as well as an astronomical interest. The Greeks
often designated the laticude of a place by giving the length of the
longest day there.)

Questions and Problems

1. Is there any place on Earth at which the Sun rises directly in the east
every day of the year?

2. Is there any time of year at which the Sun rises directly in the east
everywhere on Earth?

3. Use the celestial globe to determine the truth or falsity of the following
two familiar statements: “At the equator, the Sun always rises directly
in the east. Moreover, the Sun is above the horizon twelve hours every
day there.”

4. Suppose the Sun crosses the local meridian south of the zenith at some
particular place on Earth and on some particular day. Can there be any
place on Earth at which the Sun crosses the meridian north of the zenith
on that same day?

5. Suppose the Sun rises south of east at some particular place on Earth
and on some particular day. Can there be any place on Earth at which
the Sun rises north of east on that same day?

6. The tropic of Cancer that is often marked on globes of the Earth is a
projection of the celestial tropic of Cancer. Therefore, it is a circle on
the Earth’s surface at a latitude of abourt 23°. Whar is special about this
laticude? In what way are latitudes above this different from those below?
Think in terms of the apparent motion of the Sun.

7. The arctic circle is a circle on the Earth at a latitude of about 67°. In
what way are latitudes above the arctic circle different from those below?

8. Suppose we divide the Earth into five zones, with boundaries formed



by the arctic circle, the tropic of Cancer, the tropic of Capricorn, and
the antarctic circle. Describe characteristics of each zone as fully as
possible, in terms of the Sun’s behavior.

The Greeks divided the Earth into these same zones, but some writers
limited the frigid zones by the arctic and antarctic circles of the Greek horizon.
See section 2.5 for an explanation of the “local arctic circle.” On the zones,
see section 1.I2.

2.4 EARLY WRITERS ON THE SPHERE

Autolycus of Pitane

The oldest surviving works of Greek mathematical astronomy are those of
Autolycus, On the Moving Sphere and the two books called On Risings and
Settings™* Autolycus (roughly 360—290 B.C.) came from the city of Pitane on
the western coast of Asia Minor, opposite Mytilene. His works date from the
time when Greek mathematical astronomy was just emerging. Together, the
three works contain several dozen propositions, all simply and geometrically
proved.

On the Moving Sphere treats twelve elementary propositions concerning a
sphere that rotates about a diameter as axis. For example,

1. If a sphere rotates uniformly about its axis, all the points on the surface
of the sphere which are not on the axis will trace parallel circles that
have the same poles as the sphere, and that are perpendicular to the
axis.

One notices here something that is common in all the elementary astronomical
works: a reversal of the line of historical development. Thus, although astron-
omy began with observation of the circular motion of the stars, from which
the spherical form of the heavens was inferred, Autolycus assumes a spherical
universe and deduces the circular orbits of the stars.

4. Ifon a sphere an immobile great circle perpendicular to the axis separates
the invisible from the visible hemisphere, then during the rotation of
the sphere about its axis, none of the points on the surface of the sphere
will set or rise. Rather, the points located on the visible hemisphere are
always visible; and those on the invisible hemisphere are always invisible.

The “immobile great circle that separates the invisible from the visible hemi-
sphere” is the horizon. Circumlocutions such as this were common in an age
in which a technical vocabulary was still emerging. Our term borizon derives
from the Greek verb Aorizo, to divide or separate. In this fourth proposition,
then, Autolycus considers a situation in which the axis of the universe is
perpendicular to the horizon. Such is the case at the north or south pole of
the Earth, where the celestial pole stands directly overhead. Here, none of
the stars rise or set.

A curious aspect of Autolycus’s style in On the Moving Sphere is the absence
of any overt reference to the astronomical applications of the theorems. The
objects that rise and set are not stars but merely points (semeia), and the object
on which these points are fixed is not the cosmos but a hypothetical revolving
sphere. This was probably deemed to make the book better (because purer)
geometry.

5. If a fixed circle passing through the poles of the sphere separates the
visible from the invisible part, all points on the surface of the sphere
will, in the course of its revolution, both set and rise. Further, they will
pass the same time below the horizon and above the horizon.
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Proposition 5 applies at the Earth’s equator, where the celestial poles lie on
the horizon.

9. If on a sphere a great circle oblique to the axis separates the visible part
of the sphere from the invisible part, then, of all the points that rise at
the same time, the ones closer to the visible pole will set later; and, of

o all the points thart set at the same time, the ones closer to the visible

pole will rise sooner.

If the horizon is neither perpendicular nor parallel to the axis, it is said to be
oblique or inclined. So proposition 9 applies wherever 4 and 5 do not—that
is, everywhere on Earth except at the poles and the equator.
The propositions quoted here give a fair idea of the subject matter and
FIGURE 2.12. the level of difficulty of On the Moving Sphere. The propositions are all of
the kind that could be discovered by experiment on a concrete model and then
proved by elementary geometrical reasoning. In Autolycus we find nothing that
could serve as a basis for a general method of calculation—there is as yet no
trigonometry—but only knowledge of the sort that implies a thorough familiar-
ity with the celestial globe.

FEuclid’s Phenomena

Almost contemporary with Autolycus was Euclid, whose masterwork on geom-
etry dates from the third century B.c. The thirteen books of the Elements
represent the culmination of classical geometry and remain among the most
studied works in the history of thought. More than a 1,000 editions have
appeared since the invention of printing.25 However, the Elements contains
little that is of special interest for astronomy. The geometry of the sphere,
for example, is scarcely treated.

But Euclid did leave us a more astronomical work, the Phenomena, which
covers in eighteen theorems some important, if elementary, features of spherical
astronomy. Let us examine a few:™
1. The Earth is in the middle of the cosmos and occupies the position of

center with respect to the cosmos.

How does Euclid prove the centrality of the Earth? Suppose, as in figure 2.12,
that ABC is the circle of the horizon, with C in the eastern part and A4 in the
west. The observer is at D. Look through a sighting tube (dioptra) at the
Crab when it is rising at C. If you then turn around and look through the
other end of the tube you will see the Goat-Horn setting at A. Thus, ADC
is a diameter of the sphere of stars, for the arc between the Goat-Horn and
the Crab is six zodiac signs. In the same way, aim the dioptra at B when the
Lion is rising there. If you then look through the other end of the dioptra,
you will see the Water-Pourer setting at E. B and E are six signs apart, so
BDE is also a diameter of the sphere of stars. Therefore, the point D of
intersection is the center of the sphere. This is the Earth, where the observer
stands.

Like Ptolemy’s demonstrations of the place of the Earth, Euclid’s argument
is a thought-proof rather than a true appeal o observation. No one ever
became convinced of the centrality of the Earth by making such observations.
The conventional nature of the proof is clear from Euclid’s use of Crab and
Goat-Horn as if they were points on the sphere rather than zodiacal signs
each 30° long. Conventional demonstrations can have a long life. Copernicus,
for example, some 1,800 years later, gave exactly the same “proof” that the
Earth is as a point in comparison with the heavens.” Even the figure is the
same. Copernicus, of course, deduces from these considerations only the
smallness of the Earth: he points out, rightly, that this evidence does not
prove that the Earth is at the center of the universe.



3. Of the fixed stars that rise and set, each [always] rises and sets at the
same points of the horizon.

Euclid proves this from the spherical nature of the heavens, but this elementary
fact was certainly known long before anyone had any conception of the celestial
sphere.

1. Of [two] equal and opposite arcs of the ecliptic, while the one rises
the other sets, and while the one sets the other rises.

17. Of [two] equal arcs [of the ecliptic] on either side of the equator and equi-
distant from the equator, in the time in which one passes across the vis-
ible hemisphere the other [passes across] the invisible hemisphere. . . .

These theorems, like those in Autolycus, contain little that would be useful
to a practicing observer, nor are they the results of observation. Rather, they
are simple consequences of the spherical nature of the heavens, sprung from
the realm of thought.

The Little Astronomy

Euclid’s Phenomena and Autolycus’s On the Moving Sphere are preserved in
Greek manuscripts of the medieval period—manuscripts that were copied by
hand more than a thousand years after the originals were set down by their
authors. In many cases, these two works are found bound together with a
number of other minor works of Greek astronomy. As an example, take the
manuscript Vaticanus graecus 204 (i.e., Greek manuscript no. 204 in the
Vatican Library). This manuscript is valuable for our knowledge of Autolycus,
both because of the care with which it was copied, and because of its age: it
dates from the ninth or tenth century a.p., which makes it the oldest surviving
copy of Autolycus’s Greek text. The partial contents of this manuscript are
as follows:*

+ Theodosius of Bithynia, Spherics. First century B.c. The Spherics is a
treatise on the geometry of the sphere, in the style of Euclid’s Elements.
The Spherics of Theodosius may be considered a continuation of, and a
supplement to the Elemenss. Thus, it is more sophisticated than the
Phenomena of Euclid.

+ Aurolycus, On the Moving Sphere.

+ Euclid, Optics. This is an elementary geometrical treatise on various effects
involving the straight-line propagation of light: shadows, perspective,
parallax, and so on. Example: When one observes a sphere with both
eyes, if the diameter of the sphere is equal to the distance between the
pupils, one will see exactly half the sphere; if the distance between the
pupils is greater, one will see more than half; if the distance between
the pupils is less, one will see less than half. Second example: If several
objects move at the same speed, the most distant will appear to move
most slowly.

+ Euclid, Phenomena.

+ Theodosius of Bithynia, On Geographic Places. This little book, similar
in flavor to Euclid’s Phenomena and Autolycus’s On the Moving Sphere,
describes, in twelve propositions, the appearance of the sky as seen from
various places on the Earth. Example: an inhabitant of the north pole
would see always the northern hemisphere of the celestial sphere; the
southern hemisphere would be forever unseen; no star would rise or set.

+ Theodosius of Bithynia, On Days and Nights. This work presents thirty-
one propositions concerning the lengths of the days and nights at different
times of the year, at different latitudes on the Earth.

+ Aristarchus of Samos, The Sizes and Distances of the Sun and Moon, third
century B.C. (discussed in sec. L.I7).
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+ Autolycus, On Risings and Settings (discussed in sec. 4.9).

+ Hypsicles, On Ascensions, second century B.c. In this short treatise, Hyp-
sicles proves a number of propositions on arithmetical progressions and
uses the results to calculate approximate values for the times required
for the signs of the zodiac to rise above the horizon. Such information
had practical applications, for example, in telling time at night. Hypsicles’
treatise is discussed in section 2.16.

- Euclid, Caroptrics. This work, whose attribution to Euclid is disputed,
is concerned with what we would today call optics proper. It treats the
reflection of light and the formation of images by mirrors.

» Euclid, Data (= “given”). This treatise on elementary geometry consists
of propositions proving that, if certain things in a figure are given,
something else may be figured out.

This hodgepodge of short, elementary astronomical and geometrical works
is found in many medieval manuscripts. Sometimes one or more are wanting.
Often, other minor works are present, such as commentaries on the mathemarti-
cal works of Apollonius and Euclid. The particular collection of short works
listed above is sometimes called the Little Astronomy. Also usually included is
the Spherics of Menelaus (first century a.p.), which no longer survives in
Greek but is known through Arabic translations. Menelaus’s work treats the
geometry of spherical triangles. It has been said that, from the second century
A.D. onward, the Little Astronomy served as an introductory-level textbook for
students who were not yet prepared to tackle the “Big Astronomy,” that is,
the Almagest of Prolemy.” Tt may have been so, but the evidence is slight.”
Indeed, the chief evidence is simply the fact that many Byzantine manuscripts
contain more or less the same assortment of elementary astronomical and
geometrical works.

The supposed title of the collection is provided by a remark at the beginning
of the sixth book of the Mathematical Colleciion of Pappus of Alexandria. Of
Pappus himself we know very little. He lived and taught at Alexandria, during
the last half of the third and the first half of the fourth century a.p. He had
a son, Hermodoros, to whom he addressed two of his books. He had as friends
two geometers, Pandrosios and Megethios, who are otherwise unknown. Pap-
pus wrote a commentary on the Afmagest of Ptolemy, which survives in part.
But his most important work is the one that has come down to us under the
title The Mathematical Collection of Pappus of Alexandria. This consists of a
vast collection of propositions extracted from a great number of works on
mathematics, astronomy, and mechanics (many of which are lost today),
accompanied by Pappus’s explanatory notes, alternative demonstrations, and
new applications. The work does not seem to have been written according
to any plan, but was probably the result of many years’ reading and note
taking, no doubt in connection with Pappus’s teaching duties at Alexandria.
The sixth book of the collection is devoted to the astronomical writers. Pappus
discusses works by Theodosius, Menelaus, Aristarchus, Euclid, and Autolycus.
At the beginning of the sixth book, we find the remark, written as a subrtitle,
“It contains the resolutions of difficulties found in the lictle astronomy.”

Whether or not there really existed a definite collection of treatises known
as the Little Astronomy, there is no doubt that the individual works were used
by teachers from the late Hellenistic period down to Byzantine times. The
tradition was continued by Arabic teachers, who made use of the same treatises
in translation and added others as well. Tt was the schoolroom usefulness of
these works that guaranteed their survival, for many works of greater scientific
and historical importance have been lost, for example, most of the writings
of Hipparchus and all those of Eudoxus.

Aristarchus’s work, On the Sizes and Distances of the Sun and Moon, is
quite different from the others of the collection: Aristarchus attempted to



arrive at new astronomical knowledge by calculations based on astronomical
data. The rest of the purely astronomical works of the Little Astronomy are
theoretical developments of various properties of the celestial sphere, devoid
of any reference to particular observations. The oldest works of the collection,
those of Autolycus and Euclid (ca. 300 B.C.), represent the first attempts to
grapple with the problems of spherical geometry, and therefore are endowed
with a great historical interest. Some of the later works, for example, Theodosi-
us’s treatises On Geographical Places and On Days and Nights (ca. 100 A.D.),
lag considerably behind the astronomical and mathematical knowledge of
their own day and must actually have been written as primers for students.
Their elementary nature and pedantic style would reveal them as textbooks
in any age. Taken together, the treatises of the Lizzle Astronomy illustrate the
level of Greek mathematical astronomy around the beginning of the second
century B.C., before the revolution in calculating ability brought about by the
development of trigonometry. Menelaus’s book was one that helped point
the way to the new mathematics.

2.5 GEMINUS: INTRODUCTION TO THE PHENOMENA

In addition to the works of the Liztle Astronomy, we have several other elemen-
tary texts from a slightly later period. A notable example is the Introduction
1o the Phenomena by Geminus, a writer of the first century a.0.”" This work
is sometimes called the Isagoge, from the first word of its Greek title. This
work differs markedly from most of those in the Liztle Astronomy. In the first
place, it is longer. And second, it is written with grace and style. It is, in
fact, a well-organized and more or less complete introduction to astronomy,
intended for beginning students of this subject.

Geminus takes up the zodiac and the motion of the Sun, the constellations,
the celestial sphere, days and nights, the risings and settings of the zodiacal
signs, luni-solar periods and their application to calendars, phases of the
Moon, eclipses, star phases, terrestrial zones and geographical places, and the
foolishness of making weather predictions by the stars. From this lively and
readable book we have extracted some sections devoted to the principal circles
of the celestial sphere.

Italicized subheadings in the extract do not appear in the original, but
have been added for the reader’s convenience. Likewise, the numbering of
statements is not a part of the original text, but is a practice introduced by
modern scholars for their own convenience. An asterisk (*) in the text indicates
that an explanatory note, keyed to the statement number, follows the extract.

EXTRACT FROM GEMINUS

Introduction to the Phenomena V

The Circles on the Sphere

1 Of the circles on the sphere, some are parallel, some are oblique, and
some [pass] through the poles.

The Parallel Circles

The parallel [circles] are those that have the same poles as the cosmos.
There are s parallel circles: arctic [circle], summer tropic, equinoctial,*
winter tropic, and antarctic [circle].

2 The arctic circle* is the largest of the always-visible circles, [the circle]
touching the horizon at one point and situated wholly above the Earth.
The stars lying within it neither rise nor set, bur are seen through the whole
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night turning around the pole. 3 In our ozkumene,* this circle is traced
out by the forefoot of the Greatr Bear.*

4 The summer tropic circle is the most northern of the circles described
by the Sun during the rotation of the cosmos. When the Sun is on this
circle, it produces the summer solstice, on which occurs the longest of all
the days of the year, and the shortest night. 5 After the summer solstice,
however, the Sun is no longer seen going towards the north, but it turns
towards the other parts of the cosmos, which is why [this circle] is called
“tropic.”*

6 The equinoctial circle is the largest of the 5 parallel circles. It is
bisected by the horizon so that a semicircle is situated above the Earth,
and a semicircle below the horizon. When the Sun is on this circle, it
produces the equinoxes, that is, the spring equinox and the fall equinox.

7 The winter tropic circle is the southernmost of the circles described
by the Sun during the rotation of the cosmos. When the Sun is on this
circle it produces the winter solstice, on which occurs the longest of all the
nights of the year, and the shortest day. 8 After the winter solstice, however,
the Sun is no longer seen going towards the south, but it turns toward the
other parts of the cosmos, for which reason this [circle] too is called “tropic.”

9 The antarctic circle is equal [in size] and parallel to the arctic cirdle,
being tangent to the horizon at one point and situated wholly beneath the
Earth. The stars lying within it are forever invisible to us.

10 Of the s forementioned circles the equinoctial is the largest, the
tropics are next in size and—for our region—the arctic circles are the smallest.
11 One must think of these circles as without thickness, perceivable [only]
with the aid of reason, and delineated by the positions of the stars, by
observations made with the dioptra, and by our own power of thought.
For the only citcle visible in the cosmos is the Milky Way; the rest are
perceivable through reason. . ..

Properties of the Parallel Circles

18 Of the 5 forementioned parallel circles, the arctic circle is situated
entirely above the Earth.

19 The summer tropic circle is cut by the horizon into two unequal
parts: the larger part is situated above the Earth, the smaller part below the
Earth. 20 But the summer tropic circle is not cut by the horizon in the
same way for every land and city: rather, because of the variations in latitude,
the difference between the parts is different. 27 For those who live farther
north than we do, it happens that the summer <tropic> is cut by the
horizon into parts that are more unequal; and the limit is a certain place
where the whole summer tropic citcle is above the Earth. 22 But for those
who live farther south than we do, the summer tropic circle is cut by the
horizon into parts more and more equal; and the limit is a cerrain place,
lying to the south of us, where the summer tropic circle is bisected by the
horizon.

23 <For the horizon in Greece, the summer tropic> is cut <by the
horizon> in such a way tha, if the whole circle is [considered as] divided
into 8 parts, 5 parts are situated above the Earth, and 3 below the Earth.
24 And it was for this clime* that Aratus seems in fact to have composed
his treatise, the Phenomena; for, while discussing the summer tropic circle,
he says:

If it is measured out, as well as possible, into eight parts,
five turn in the open air above the Earth,
and three beneath; on it is the summer solstice.

From this division it follows that the longest day is 15 equinocdal hours*
and the night is 9 equinoctial hours,
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25 For the horizon at Rhodes, the summer tropic circle is cut by the
horizon in such a way that, if the whole circle is divided into 48 parts, 29
parts are situated above the horizon, and 19 below the Earth. From this
division it follows that the longest day in Rhodes is 14 1/2 equinoctial hours
and the night is 9 1/2 equinoctial hours.

26 The equinoctial circle, for the whole oikumene, is bisected by the
horizon, so that a semicircle is situated above the Earth, and a semicircle
below the Earth. For this reason, the equinoxes are on this circle.

27 The winter tropic circle is cut by the horizon in such a way that
the smaller part is above the Earth, the larger below the Earth. The inequality
of the parts has the same variation in all the climes as was the case with
the summer tropic circle, because the opposite parts of the tropic circles
are always equal to one another. For this reason, the longest day is equal
to the longest night, and the shortest day is equal to the shortest night.

28 The antarctic circle is hidden wholly beneath the horizon. . ..

45 The distances of the circles from one another do not remain the
same for the whole oikumene. But in the engraving of the spheres, one
makes the division in declination in the following way. 46 The entire
meridian circle being divided into 60 parts, the arctic [circle] is inscribed
6 sixtieths from the pole; the summer tropic is drawn s sixtieths from the
arctic [circle]; the equinoctial 4 sixtieths from each of the tropics; the winter
tropic circle 5 sixtieths from the antarctic; and the antarctic [circle] 6 sixtieths
from the pole.

47 The circles do not have the same separations from one another for
every land and city. The tropic circles do maintain the same separation
from the equinoctial at every latitude, but the tropic circles do not keep
the same separation from the arctic [circles] for all horizons; rather, the
separation is less for some [horizons] and greater for others. 48 Similarly,
the arctic [circles] do not maintain a distance from the poles that is equal
for every latitude; rather, it is less for some and greater for others. However,
all the spheres are inscribed for the horizon in Greece. . ..

The Zodiac

51 The circle of the 12 signs is an oblique circle. It is itself composed
of 3 parallel circles,* two of which are said to define the width of the zodiac
circle, while the other is called the circle through the middles of the signs.
52 The latter circle is tangent to two equal parallel circles: the summer
tropic, at the 1st degree of the Crab, and the winter tropic, at the 1st degtee
of the Goat-Horn. It also cuts the equinoctial in two at the 1st degree of
the Ram and the 15t degree of the Balance. 53 The width of the zodiac
circle is 12 degrees. The zodiac circle is called oblique because it cuts the
parallel circles. . . .

The Milky Way

68 The Milky Way* also is an oblique circle. This circle, rather great
in widtch, is inclined to the tropic circle. It is composed of a cloud-like
mass of small parts and is the only [circle] in the cosmos that is visible. 69
The width of this circle is not well defined; rather, it is wider in certain
parts and narrower in others. For this reason, the Milky Way is not inscribed
on most spheres.*

This also is one of the great circles. 70 Circles having the same center
as the sphere are called great circles on the sphere. There are 7 great circles:
the equinoctial, the zodiac with the [circle] through the middles of the signs,
the [circles] through the poles, the horizon for each place, the meridian, the

Milky Way.”
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Local Arctic Circle

Notes to the Extract from Geminus

1. Equinoctial. 'The equinoctial circle is the celestial equator. It is called
equinoctial because the Sun makes the day and night equal when it is on this
circle. The Greek term is isemerinos kuklos (equal-day circle).

2. Arctic circle.  For the Greeks, the arctic circle is a circle on the celestial
sphere, with its center at the celestial pole, and its size chosen so that the
circle grazes the horizon at the north point (see fig. 2.13A). The stars within

the arctic circle are circumpolar; that is, they never rise or set. The size of the
local arctic circle depends on the latitude of the observer. Figure 2.13A shows
the arcric circle for latitude 40° N, and figure 2.13B, the arctic circle for
latitude 20° N. The radius of the arctic circle is the angular distance of the
celestial pole above the north point of the horizon. Bur this angular distance
(the altitude of the pole) is equal to the latitude of the place of observation.
Thus, the radius of the arctic circle for a particular place is equal to the latitude
of that place. The modern celestial arctic circle is fixed in size: it is a circle,
centered on the pole, with a radius of about 24°. The modern, celestial arcric
circle is the path traced out by the pole of the ecliptic during the daily
revolution of the heaven. (The arctic circle one sees marked on globes of the

Earth can be regarded as a projection of the one in the sky.) Because the size

of the arctic circle in the Greek style varies with the location of the observer,

we shall call this the local arctic circle. The fixed circle of the present age will
B be called the modern arctic circle.

Oikumene. The oikumene is the inbabited world. It is used by Greek
writers in two different senses. It may designate the Greeks™ portion of the
Earth, as opposed to barbarian lands. But the word is also used by geographical
writers to mean the whole inhabited world, namely, Asia, Europe, and Africa.
Geminus here appears to speak in the more restricted sense.

Great Bear. In ancient Greece the foreleg of the constellation of the Great
Bear (Ursa Major) did not quite set, but grazed the horizon in the north.
The foreleg of the Bear was therefore situated on the local arctic circle, and
in the course of the night, it traced out this circle in the sky. Our word arctic
derives from arktos, the Greek word for bear.

5. Tropic. Our word tropic derives from the Greek word trope, a turn,
turning.

24. Clime. “Clime,” from klima (region or zone), but originally a slope
or inclination: the clime is determined by the inclination of the axis of the
cosmos to the horizon. A clime is a zone of the Earth lying near one parallel
of latitude. Often, climes were designated in terms of the length of the longest
day. Thus, one might say that Seartle and Basel are in the clime of sixteen
hours: at both these cities the length of the day at summer solstice is sixteen

FIGURE 2.13. A (f0p). The local arctic and
local antarctic circles in the sense of the Greek
astronomers, shown for a latitude of 40° N.

B (botrom). Local arctic and antarctic circles for
a latitude of 20° N.

hours. The verses that Geminus quotes are from Aratus’s Phenomena, lines
497-499.

24. The longest day is 15 equinoctial hours. In Greece five-eighths of the
summer tropic circle is above the horizon. The length of the solstitial day is
therefore 24 hours X 5/8 = 15 hours.

51. Composed of 3 parallel circles.  See figures 2.2 and 2.7.

68. The Milky Way. The “Milky Way” is galaktos (milky) kuklos (circle),
from which comes our word galaxy. Aristotle, in Meteorology 1, 8 (345a11-
346brs), discusses several theories of the Milky Way: (1) Some of the Pythagore-
ans held thar the Milky Way was a former course of the Sun and thart this
track had been burned. (2) Anaxagoras and Democritus said that the Milky
Way was the light of stars lying in the Earth’s shadow. Many of the stars on
which the Sun’s rays fall become invisible because of the brightness of these
rays. Bur faint stars in the Earth’s shadow do not have to overcome the
brightness of the Sun’s rays and thus they become visible. (3) According to a
third opinion, the Milky Way was a reflection of the Sun. Aristotle refutes



each of these theories in turn: (1) If the Milky Way were a former, scorched
track of the Sun, one would expect the zodiac also to be scorched, but it is
not. (2) If the Milky Way were the light of stars lying in the Earth’s shadow,
the position of the Milky Way should change during the year as the Sun’s
motion on the ecliptic causes the shadow to move. Besides, the Sun is larger
than the Earth and therefore the cone of the shadow does not extend as far
as the sphere of the stars. (3) The Milky Way cannot be a reflection of the
Sun, for it always cuts through the same constellations, although the Sun’s
position among the stars is constantly changing. But if one moves an object
around in front of a mirror the location of the image is also seen to change.
Aristotle’s own opinion is that the Milky Way consists of the halos seen
around many individual stars. These halos arise in the following way. Above
and surrounding the Farth, at the upper limit of the air, is a warm, dry
exhalation. This exhalation, as well as a part of the air immediately beneath
it, is carried around the Earth by the circular revolution of the heavens. Moved
in this manner, it bursts into flame wherever the situation happens to be
favorable, namely, in the vicinity of bright stars. Aristotle points out that the
stars are brighter and more numerous in the vicinity of the Milky Way than
in other parts of the sky. The only objection one might make is thar the dry
exhalation ought also to be inflamed in the vicinity of the Sun, Moon, and
planets, which are brighter than any of the stars. But, according to Aristotle,
the Sun, Moon, and planets dissipate the exhalation too rapidly, before it has
a chance to accumulate sufficiently to burst into flame. Note that for Aristotle
the Milky Way is an atmospheric, and not a celestial, phenomenon: it is
produced at the outer boundary of the air.

68. The Milky Way is not inscribed on most spheres. However, Prolemy,
in his directions for constructing and marking a celestial globe (A/magest VIII,
3), includes the Milky Way among the objects to be represented.

2.6 RISINGS OF THE ZODIAC CONSTELLATIONS:
TELLING TIME AT NIGHT

In everyday life, the Greeks kept time differently than we do. Rather than
dividing the time between one midnight and the next into twenty-four equal
parts, they divided the time between sunrise and sunset into twelve seasonal
hours, which changed in length through the year as the day itself changed.
Similarly, the night was divided into twelve seasonal hours, all equal to one
another, but not equal to the day hours {except at the equinox). “T'wo hours
after sunset” meant one-sixth of the way from sunset to sunrise. It did not
matter that the rime from sunset until the second seasonal hour was nearly
twice as long in winter as in summer.

The seasonal hour may seem strange to a modern reader. Bur nature
provides a means of observing the time at night, at least approximately, in
terms of seasonal hours. In the course of any night, six signs of the zodiac
rise. The proof of this assertion is elementary. At the beginning of night
(sunset), the point of the ecliptic that is diametrically opposite the Sun will
be on the eastern horizon. At the end of the night (sunrise), the point opposite
the Sun will have advanced to the western horizon. The half of the ecliptic
following this point is then seen above the horizon and is the very part of
the ecliptic that rose in the course of the night.

The risings of six zodiacal signs every night divide the night into six roughly
equal parts, of two seasonal hours each. A glance toward the eastern horizon,
to see which zodiacal constellation is rising, will suffice to determine the time
of night, provided that one knows which constellation the Sun is in.

This information is provided by table 2.1. From March 21 to April 20, the
Sun travels from longitude 0° to longitude 30°; that is, it traverses the sign
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TABLE 2.1. Progress of the Sun through the Zodiac

Corresponding

The Sun Is in Roughly to the
On these Days the Sign of the Constellation
Mar 21-Apr 20 Ram Pisces
Apr 20-May 21 Bull Aries
May 21-Jun 22 Twins Taurus
Jun 22-Jul 23 Crab Gemini
Jul 23-Aug 24 Lion Cancer
Aug 24-Sep 23 Virgin Leo
Sep 23-Oct 24 Balance Virgo
Oct 24-Nov 23 Scorpion Libra
Nov 23-Dec 22 Archer Scorpius
Dec 22-Jan 20 Goat-Horn Sagittarius
Jan 20-Feb 19 Water-Pourer Capricornus
Feb 19-Mar 21 Fishes Aquarius

of the Ram. In antiquity, the stars of the constellation Aries (the Ram) were
in this sign. Bu, this is no longer the case today. Because of precession, the
sign of the Ram (the first 30° of the zodiac) is now mostly occupied by the
constellation Pisces. Thus, in the present era, the Sun is among the stars of
the constellation Pisces between March 21 and April 20. (Precession is discussed
in detail in sec. 6.1.) For a rough-and-ready method of telling time, we will
rely on observations of the stars and not the signs. We will use the third
column of table 2.1, not the second. (In Greek antiquity, the third column
would have been the same as the second.)

Example

Problem: It is the night of July 23. We look toward the eastern horizon
and see that Aries has risen completely and is well above the ground; none
of the stars of Taurus are visible. Evidently, Taurus is only just beginning to
rise. What time is it?

Solution:  On July 23, the Sun is entering the constellation Cancer (see
table 2.1). The first part of Taurus is beginning to rise. Next will rise the first
part of Gemini, then the first part of Cancer, where the Sun is now located.
From Taurus to Cancer is two signs, each of which takes roughly 2 seasonal
hours to rise. The time is therefore 4 seasonal hours before sunrise. Or, since
6 seasonal hours elapse between midnight and sunset, we may also say 2
seasonal hours after midnight.

Conversion to Modern Time Reckoning An ancient Greek would have been
satisfied with either of these manners of expressing the time. A modern reader,
however, is likely to be dissatisfied with a time of night expressed in terms
of seasonal hours.

Conversion to equinoctial hours can be made with the aid of table 2.2,
which gives the length of the night, for each of six latitudes, on the days
when the Sun enters each of the zodiacal signs. For example, on July 23, the
night at latitude 41°27” lasts 9"29". The peculiar values of the latitudes result
from a choice made in the construction of the table, that the longest and
shortest nights should be whole numbers of hours: these are the geographical
climes of the old astronomers. The method of calculating the table is explained
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TABLE 2.2. The Length of the Night

North Latitude

Sun’s Approx.
Place Date 0°00 16°46°  30°51°  41°27°  49°05’  54°33
0° Crab Jun 22 12'00" 11%00” 10°00™  9%00™ 800" 700"
0° Lion Jul 23
or 12 00 11 09 10 19 9 29 8 40
0° Twins May 21
0° Virgin Aug 24
or 12 00 11 32 11 04 10 37 10 12
0° Bull Apr 20
0° Balance Sep 23
or 12 00 12 00 12 00 12 00 12 00
0° Ram Mar 21
0° Scorpion QOct 24
or 12 00 12 28 12 56 13 23 13 48
0° Fishes Feb 19
0° Archer Nov 23
or 12 00 12 51 13 41 14 31 15 20

0° Water-Pourer ~ Jan 20

0° Goat-Horn Dec 22 12"00™ 13%00™  14"%0™ 15"00™ 16°00™  17%00™

in section 2.13. The completion of the entries under latitude 54°33" is left for
the exercise of section 2.14.

Let us take up the conversion problem. On July 23, the time is 2 seasonal
hours past midnight. Suppose we are at Seattle (latitude 48° N). We wish to
express the time in terms of equinoctial hours. In table 2.2 we find that, at
this latitude and at this time of year, the night lasts about 8 hours 40 minutes
(equinoctial hours, of course). By definition, there are 12 seasonal hours in

the night. Thus,
I2 seasonal night hours = 8" 40"

So,

2

2 seasonal night hours = (8”40”’) X o
b o_m
=127".

(The two seasonal night hours are short in July, because the night itself is
short.) The time is thus 127" after midnight, or 1:27 A.mM. In July, Seattle uses
daylight savings time. If we wish to compare our result with a clock, we must
add one hour to the time obtained from the stars: clocks will read 2:27 A.m.

This method of telling time is only approximate, for two reasons. First,
the six signs of the zodiac that rise in the course of a night do not all take
exactly two seasonal hours to rise: some take a little more, some a little
less. And, second, we are not using zodiacal signs, but constellations. These
constellations are not all of the same size. Virgo, for example, is much larger
than Aries. Nor do they all lie exactly on the ecliptic. Some, like Leo and
Gemini, are north of the ecliptic; some, like Taurus and Scorpius, are south
of the ecliptic. These variations in the sizes and positions of the zodiacal
constellations have an effect on the times they take to rise. Nevertheless, this
rough-and-ready method should always give the time correct to the nearest
hour.
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Ancient References to Telling Time by
the Zodiacal Constellations

Aratus refers to this method of telling time at night in his Phenomena:

Not useless were it for one who secks for signs of the
coming day to mark when each sign of the zodiac rises.
For ever with one of them the sun himself rises.”

But Aratus takes the traditional method one step further. He points out that
the zodiac constellation that is rising may sometimes be obscured by clouds
or hills. Therefore, for each zodiac constellation, he gives a list of other
constellations that rise or set while the zodiac constellation is rising:

Not very faint are the wheeling constellations that are set
about Ocean at East or West, when the Crab rises,

some setting in the West and others rising in the East.

The Crown sets and the Southern Fish as far as its back. .. >

This list, which constitutes a major section (some 164 lines) of the poem,
would have permitted a person to tell the time of night, if any portion of the
horizon were visible. The other necessary ingredient was, of course, knowledge
of the Sun’s position in the zodiac. But, from the fifth century B.C. on, this
was information the average person was likely to have—just as the average
person today can be counted on to know the current month of the calendar.
In some towns, parapegmata (public calendars) were set up, displaying the
current place of the Sun in the zodiac, along with other information.

Hipparchus, always a stickler for precision, criticized this portion of the
poem in his Commentary on Aratus and Eudoxus,” pointing out that each
zodiac sign does not really take the same amount of time to rise (as we, too,
have mentioned above).

Note on Computations with Base-60 Numbers

In the example above, we found that 12 seasonal hours last 8°40”. To obtain
the length of 2 seasonal hours, it was necessary to multiply by 2/r2:

2
g 40" x = =2
(8'40") >

There are several ways to perform this computation. We could express the
time interval solely in terms of minutes (8}’40'” = 520"), do the arithmetic, and
then regroup the minutes into whole hours. Alternatively, we could express
the 40" as a decimal fraction of an hour (840" =8.67") and then do the
arithmetic. Both of these methods are awkward. Their awkwardness comes
from pushing the calculations through base-10 forms, when the original time
interval was expressed in base-6o. Calculations involving time (in hours,
minutes, seconds) or angle (in degrees, minutes, seconds) are simplified if one
exploits the base-6o nature of the numbers.
First, write 2/12 as a fraction with denominator 6o:

[ 2 A m 10

8 40" x == (8 X —.

(840" x == (840 ) o

Next, perform the division by 6o, which merely changes hours to minutes and
minutes to seconds (1/60 of an hour is a minute):

I0

oo (8"40") X 10.

(8"40") X

Complete the arithmetic:



(8"40") X 10 = 80" + 400’
= 87”’

b
=127".

A great deal of time and trouble will be saved if computations involving
base-60 numbers are performed in this way.

2.7 EXERCISE: TELLING TIME AT NIGHT

Use the method explained in section 2.6 to deduce the time of night in each
of the following situations.

1. Date: December 22. Place: Columbus, Ohio (latitude 40° N). Observa-
tion of the sky: Libra has completely risen, but none of the stars of
Scorpius is visible yet.

A. What is the time of night, expressed in seasonal hours? (Answer: 4
seasonal hours after midnight.)

B. What is the time expressed in terms of equinoctial hours? (Answer:
roughly s:00 a.M.)

2. Date: February s. Place: Columbus, Ohio (latitude 40° N). Observation
of the sky: Scorpius has risen fully. None of the stars of Sagittarius is
up vyet.

A. What is the time of night, in terms of seasonal hours? (Note that
on February s, the Sun is in the middle of a zodiac sign, rather than
at the beginning of one.)

B. What is the time expressed in terms of equinoctial hours?

2.8 OBSERVATION: TELLING TIME AT NIGHT

On a clear night, go outdoors and look to see which zodiac constellation is
rising. If necessary, consult a star chart as an aid in identifying the constella-
tions. Use your observation, together with table 2.1, to figure out the time of
night in terms of secasonal hours. Then use table 2.2 to convert to a time
expressed in terms of equinoctial hours. Compare your result with the time
given by a clock. (In summer, don’t forget to allow for daylight savings time,
if necessary.)

2.9 CELESTIAL COORDINATES

Coordinates of a Point on the Surface of the Earth

The reader is no doubt familiar with the common way of specifying a location
on the surface of the Earth. A meridian is chosen to represent the zero of
longitude. By an international agreement more than a hundred years old, this
is the meridian through the old observatory at Greenwich, England. The
longitudes of other meridians are are measured in degrees east or west of the
Greenwich meridian. Thus, one says that the longitude of New Orleans is
90° west of Greenwich, or simply 90° W.

The latitude of a city is its angular distance north or south of the plane
of the equator. For example, the latitude of New Orleans is 30° N.

Longitude and latitude are said to form an orthogonal pair of coordinates.
The circles of constant latitude are at right angles to the meridians. Thus, the
two coordinates are cleanly separated.

Because all appearances place us at the center of a celestial sphere, we may
use a similar method to specify the locations of stars. There are several ways
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of doing this, depending on the choice one makes for the plane of reference.
Four planes are in common use: the planes of the horizon, the celestial equator,
the ecliptic, and the Milky Way. We need to become familiar with all but
the last of these.

Horizon Coordinates

The simplest way to give the position of a star is to tell how high it is above
the horizon and in which direction it lies. One might say, for example, that
a star is 23° east of north and 43° above the horizon. If one pointed one’s
arm directly north, parallel to the horizon, then swung it horizontally 23°
toward the east, then up vertically 43°, one could expect to end by pointing
at the star.

The angular distance of the star above the horizon is called its altizude.
The direction of the star in the horizontal plane is called its azimuth. We
have already made use of altitudes (secs. 1.4 and 1.12). Azimuth is measured
clockwise around the horizon, usually from the north point. So one says that
a star directly in the east has an azimuth of 90°, while a star directly in the
west has an azimuth of 270°. However, azimuth is often measured instead
from the south point, so one must make sure of the convention being followed
in any particular situation.

Like most angles, altitude and azimuth are commonly measured in terms
of the degree, which is 1/360 of a complete circumference. If fractions of a
degree must be specified, one makes use of the minute of arc, which is 1/60
of a degree. Similarly, the second of arc is 1/60 of a minute. The degree,
minute, and second of arc are represented by the marks ©, ’, ”, respectively:

1 circumference = 360° 1° = 60" 1 = 60"

These units were convenient for the Babylonians who invented them more
than two thousand years ago, because they did their arithmetic in a system
based on the number 6o, rather than on 10 as ours is. Today, this division
of the circle is a little cumbersome. In the last few decades, it has become
more popular to use decimal fractions of the degree, but the ancient sexagesimal
division is still in use.

Celestial Equatorial Coordinates

The horizon coordinates are easy to measure and they are a natural choice.
However, they have the disadvantage that observers at different places on
Earth will obtain different coordinates for the same star, because each observer
uses his own personal horizon as his plane of reference. Moreover, even for
a single observer in a fixed place, the coordinates of all the stars will change
as the diurnal revolution carries them through the sky. We can overcome the
first difficulty if all observers will agree to use the same reference plane. And
the second difficulty is removed if we fix the coordinates to the revolving
celestial sphere rather than to the stationary Earth.

Imagine drawing on the sphere of the heavens a set of parallels and meridians
like those you see on globes of the Earth. These are the basis for celestial
equatorial coordinates. The reference plane is the plane of the celestial equator.
In figure 2.14, draw a circular arc from the north celestial pole G through star
S and extend it unil it meets the celestial equator perpendicularly at A. The
angular distance of star S above the plane of the equator is called its declination.
This is angle AOS, which is measured at the Earth O. The declination in
astronomy is then analogous to the latitude in geography. Declination is often
denoted by the Greek letter 8. (Declination was introduced in sec. 1.12.)



The angle analogous to geographical longitude is called right ascension. We
must choose a place on the celestial equator as the zero of right ascension—and
the choice, by agreement, is the vernal equinox Y. In figure 2.14, the right
ascension of star S is angle Y? OA. Right ascension often is designated by the
Greek letter o Unlike geographical longitude, right ascension is measured
only eastward from the zero point, so thar right ascensions run from zero to
360°.

Conventionally, right ascensions are usually not measured in degrees, but
rather in hours. So, rather than dividing the celestial equator into 360°, we
divide it into 24 equal parts, and each of these parts is called an Aour. Thus,
one hour of right ascension is the same as 15°, that is, one twenty-fourth of
the celestial equator. The circles through the celestial poles that play the roles
of meridians, such as GY'H and GSH, are called hour circles. The hour is
further divided into sixty minutes, usually denoted m to distinguish them
from sixtieths of a degree. Similarly, the minute of right ascension is divided
into sixty seconds, denoted s:

. booh
I circumference = 24" 1 = 60" 1" = 60’

It must be emphasized that 1’ and 17, which should be read as “one minute
of arc” and “one minute of right ascension,” respectively, are not angles of
the same size, since 1’ is a sixtieth of 1/360 of a circle, while 1” is a sixtieth
of 1/24 of a circle. The following relations may be useful:

h ) m ’ s ”

I'=15"° 1 =15

The advantage of this system of celestial coordinates is that the coordinates
revolve with the stars—the meridians and parallels are, as it were, painted on
the celestial sphere. A given star therefore keeps the same celestial coordinates
for years at a time. As an example, in 1977, the coordinates of Arcturus were

. . boom . i o s . . .

right ascension 1414", declination +19°19". A plus or minus sign with the
declination indicates whether the star is north or south, respectively, of the
celestial equator.

Ecliptic Coordinates

A different set of celestial coordinates is obtained if one selects the ecliptic
rather than the celestial equator as the plane of reference. The ecliptic is
inclined about 23° to the celestial equator, as shown in figure 2.15. The Earth
O is the center of the celestial sphere. If at O we raise a line perpendicular
to the plane of the ecliptic, this line will pass through the sphere at two points
Jand K called the poles of the ecliptic. The poles of the ecliptic have the same
relation to the ecliptic as the celestial poles have to the celestial equator, or
as the zenith (which is the pole of the horizon) has to the horizon. The north
ecliptic pole J is therefore 23° distant from the north celestial pole G.

In figure 2.15 draw a circular arc through the north pole J of the ecliptic
and star S so that the arc intersects the ecliptic perpendicularly at B. The
angular distance of the star away from the ecliptic (angle BOS) is the star’s
celestial latitude and is positive or negative depending on whether the star is
north or south of the ecliptic. Celestial latitude is often designated by the
Greek letter B.

The other ecliptic coordinate is called celestial longitude (denoted A) and
is measured eastward along the ecliptic from the vernal equinox Y. In figure
2.15 this is angle Y’ OB. Note that, while in geography “latitude” and “longi-
tude” are referred to the equator, in astronomy these terms are reserved for
ecliptic coordinates.
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FIGURE 2.14. Celestial equatorial coordinates.

o is the right ascension of star S (angle Y OA.
8 is the declination of star S (angle AOS).
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FIGURE 2.I5. Ecliptic coordinates. A is the
celestial longitude of star S. B is the celestial
latitude.
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FIGURE 2.16. Equatorial coordinates (0t and )
and ecliptic corrdinates (A and [B) for a single
star S.

Today, celestial longitudes are usually measured in degrees, minutes, and
seconds so that they run from zero right up to 360°. But among the ancients
it was common practice to divide the ecliptic into twelve signs, each 30° long,
and to use the sign as a larger unit of angular measure. The vernal equinox
marks the first point of the Ram, the sign of the zodiac that runs from 0° to
30° longitude. The next sign is that of the Bull, which runs from 30° to 60°
longitude; then comes the Twins, from 60° to 90°, and so on. (The names
and symbols of the signs are given in fig. 2.2.) So, for example, one may write
the longitude of Aldebaran either as 68° or as Twins 8°. Similarly, the longitude
of Spica may be written either as 202° or as Balance 22°. Also, in giving the
measure of any angle, the custom was once to express it in terms of signs,
degrees, and minutes. The difference in longitude between Spica and Alde-
baran, which is 134°, may also be written 4 signs, 14°, or £14°.

Any star may be located on the celestial sphere by means of either the
equatorial coordinates o and & or the ecliptic coordinates A and P. As an
example, star S in figure 2.16 is located on the celestial sphere to represent
Capella, whose position is completely specified by either one of the following
pairs of coordinates:

Coordinates of Capella

Equatorial coordinates Right ascension o = shs”
Declination 8 = +45°59
Ecliptic coordinates Longitude A= 81°32
Latitude B +22°52/

If either pair of coordinates is known, it is possible to obtain the other, either
by calculation or by examination of a celestial globe or armillary sphere.
Why is there a need for two sets of celestial coordinates if one set will
sufhice? The answer is that it is a matter of convenience. If one is interested
in effects that depend on the diurnal rotation, then work will be simplified
by the use of equatorial coordinates. On the other hand, the study of planetary
motion is simplified by the choice of ecliptic coordinates, since the planets
all move nearly in the plane of the ecliptic. The nature of the particular
problem under consideration determines which set of coordinates ought to

be used.

Coordinates in Greek Geography and Astronomy

If we examine the geographical and astronomical work of Ptolemy, we see
the modern orthogonal coordinates fully developed. In his Geagraphy, Prolemy
gave a list of 8,000 cities and other localities and specified their locations in
terms of longitudes and latitudes, measured in degrees and minutes, exactly
in our fashion. Ptolemy’s reference meridian was the meridian through the
“Fortunate Islands,” that is, the Canary Islands.” Polemy sclected the meridian
through the Fortunate Islands as his zero of longitude because these islands
were the westernmost part of the known world. Prolemy’s list of cities is laid
out much like a modern gazetteer.

Prolemy’s Geography was one of the first works to make a thoroughgoing
use of longitudes and latitudes. Ptolemy makes many references to his predeces-
sor in geography, Marinus (ca. A.p. 100). From Ptolemy’s remarks, it is clear
that Marinus also used longitudes and latitudes, but not as systematically as
Ptolemy. For example, Ptolemy complains that in Marinus’s work, one must
look in one place to find the latitude of a city and in another to find the
longitude.

The Greeks before Marinus’s time commonly specified the latitude of a
place not in our fashion but in terms of the length of the summer solstitial
day. For example, a Greek of the first century would have said that Rhodes



is in the clime of 14 1/2 hours (see Geminus, Introduction to the Phenomena
V, 23-25, in sec. 2.5). Another method of specifying latitude was in terms of
the lengths of equinoctial shadows (as in sec. 1.12). Longitudes were often
specified in terms of the time difference separating a locality from Alexandria.
Even less systematic were the handbooks then in circulation, which gave the
locations of various places in terms of their distances or their travel times
from one another. Thus, while there are examples of earlier uses of latitudes
and longitudes in our style, it seems that this usage did not become systematized
until about the beginning of the second century a.p. Prolemy’s Geography
played a major role in popularizing this approach.

In astronomy, too, Ptolemy’s systematic use of orthogonal coordinates
was decisive. Most of the Almagest uses ecliptic coordinates, that is, celestial
longitudes and latitudes. For example, Ptolemy’s catalog of stars in books VII
and VIII gives the longitudes, latitudes, and magnitudes of some 1,000 stars.
This catalog, which was not replaced until the Renaissance, is the direct
ancestor of all modern star catalogs. In his planetary work, as well, Ptolemy
regularly used ecliptic coordinates. Ptolemy, like most of his successors, speci-
fies the longitude of a body by giving its zodiac sign, the degree within the
sign, and minutes of angle (if required). For Ptolemy, as for us, the first sign
of the zodiac is the Ram, which begins at the vernal equinox.

When we look at what remains of the astronomical work of Ptolemy’s
predecessors, it seems that a systematic use of orthogonal ecliptic coordinates
was late to emerge. Of all the extant works of Prolemy’s Greek predecessors,
the only one that contains a substantial amount of numerical data on star
positions is Hipparchus’s Commentary on the Phenomena of Aratus and Eudoxus.
In that work, Hipparchus makes use of rather peculiar (from our point of
view) sets of mixed coordinates. To be sure, Hipparchus does sometimes give
declinations and right ascensions. But much more frequently he gives the
longitude of the ecliptic point that rises at the same time as the star in question,
or the longitude of the ecliptic point that culminates with the star, and so
on. These are not orthogonal pairs and are not very convenient in calculation.

In the Almagest, Ptolemy cites many observations of his predecessors. Nota-
ble among these is a list of declinations of eighteen stars, attributed to Timo-
charis and Aristyllos (third century B.c.). Thus, Greeks of the third century
were beginning to use and to measure actual celestial coordinates.

Ptolemy also cites a fair number of planetary observations by his predeces-
sors. But here the situation is rather different. In the observations attributed
to Timocharis, the planet being observed is said to be next to a certain star, with
no actual numerical value assigned to the position. For, example, according to
Prolemy (Almagest X, 4), Timocharis observed Venus during the night between
Mesore 17 and 18, in year 476 of Nabonassar; the planet appeared to be exactly
opposite the star N Virginis. Because Ptolemy had measured the longitude of
the star (set down in his star catalog), he was able to turn Timocharis’s
observation into a longitude of the planet: Venus was at Virgin 41/6° (longitude
154°10"). Even the planet observations of Ptolemy’s own contemporary at
Alexandria (a certain Theon) were given as angular distances from certain
stars.

As discussed in section 6.4, the measurement of absolute celestial longitudes
is a delicate business. It appears that there was little effort in this direction
among the Greeks before Ptolemy’s time. In this, as in so much else, his work
proved to be very influential. The decisive event was perhaps the clarification
of the nature of precession, which meant that ecliptic coordinates should be
favored over equatorial coordinates.

The division of the zodiac into signs and the measurement of star and
planet places in terms of zodiacal longitudes were, of course, a Babylonian
inventions. Prolemy’s thoroughgoing use of ecliptic coordinates can be viewed
as a Greek systemization of a practice adapted from Babylonian astronomy.
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But it is important to note that there were several different conventions
regarding the beginning points of the signs. For Ptolemy, as for later European
astronomers, the beginning of the Ram is at the vernal equinoctial point. But
the Babylonians placed the signs in such a way that the equinox fell ac the
8th degree of the Ram. That is, the Babylonian sign of the Ram is shifted by
8° with respect to the Greek sign of the Ram. All of the other signs are
similarly displaced by 8°. (The Babylonians also had a convention that placed
the equinox at the roth degree of the Ram. See sec. 5.2 for more detail.)

Among the early Greek astronomers, yet another convention was popular.
Eudoxus, for example, defined the signs so that the equinoctial and solstitial
points fell at the midpoints of the signs—the vernal equinox at the 15th degree
of the Ram, the summer solstice at the 15th degree of the Crab, and so on.
The vernal equinox was the same point for all: the difference fay in the way
the artificial signs were defined.

Moreover, because the Athenian calendar year began with the new Moon
immediately after the summer solstice, some of the earlier Greek writers made
the Crab, rather than the Ram, the first sign of the zodiac. The Almagest
standardized practice once and for all.

Conventional Symbols for the Signs of the Zodiac

The modern symbols for the signs of the zodiac are given in figure 2.2. Some
of these symbols, such as the arrow for Sagittarius, seem to be truly ancient,
but most of them date only from the Middle Ages. In ancient texts the names

FIGURE 2.I7. Zodiac symbols in some late
medieval astronomical manuscripts.
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of the signs were generally written out in ordinary fashion, or sometimes in
abbreviated form. Another common notation represented the signs by the
numbers one through twelve, but Aries was not always counted as the first
sign.”

Figure 2.17 presents symbols collected from several late medieval astronomi-
cal and astrological manuscripts at the Bibliothéque Nationale, Paris. No
attempt has been made to be exhaustive. The purpose of the table is merely
to offer a few examples of the notation employed before the modern period.

Mathematical Postscripr

As mentioned above, one may always perform a conversion between equatorial
and ecliptic coordinates by manipulation of a globe. But, for the sake of
convenience, here are trigopnometric formulas for effecting the same conversion:

sin $=sin & cos € — cos & sin QL sin €

sin 0L cos & cos € + sin O sin €
cos ¢ cos O

tan A=

€ is the obliquity of the ecliptic, which for the modern era has the value 23°26".
To obtain formulas for converting from ecliptic to equarorial coordinates,
interchange the symbols in the above formulas according to the scheme
B 8, L o o, &€ > —¢. Derivations of these formulas may be found in any
textbook on spherical astronomy.

2.10 EXERCISE: USING CELESTIAL COORDINATES

1. The ecliptic coordinates of Regulus are approximately A = Virgin 0°,
B = 0°. Express the longitude of Regulus in degrees measured from the
vernal equinox.

2. Use an armillary sphere or celestial globe to determine the equatorial
coordinates o and & of Regulus.

3. Usea celestial globe to determine the ecliptic coordinates of the following

stars:

Equatorial

coordinates
Star o )
¥ Sag 18’ -30°
Betelgeuse (o0 Ori) 6 + 7
Menkalinan (B Aur) - 6 +45
Caph (B Cas) 0 +60
Phecda (y UMa) 12 +54
Hamal (o, Ari) 2 +24

The first three stars, which all lie on the solstitial colure, should be easy, since
this colure, which is their hour circle, also happens to be perpendicular to
the ecliptic. The last three may be a little tricky. On the celestial globe, stretch
a string from the star down to the ecliptic so that string and ecliptic meet at
right angles. The place where the string cuts the ecliptic gives the longitude
of the star, and the length of the string, expressed in degrees, gives the latitude.

2.11 A TABLE OF OBLIQUITY

Table 2.3 is a table of 0bliquity, which gives the declination & of every degree
of the ecliptic. For example, the vernal equinox, which is the zeroth degree
of the Ram, has declination 0°00’".
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TABLE 2.3. Table of Obliquity

Decl. Decl. Decl.
Ram + Bull + Twins +
(Scales) ) (Scorpion)  (-) (Archer) (&)

0° 0°00"  30° 0° 11°28’ 30° 0° 20°09" 30°
1° 0°24"  29° 1° 11°49" 29° 1° 20°21" 29°
2° 0°48"  28° 2° 12°10 28° 2° 20°33' 28°
3° 1°12” 27° 3° 12°31" 27° 3° 20°45 27°
4° 1°35"  26° 4° 120517 26° 4° 20°57' 26°
5° 1°59"  25° 5° 13°11’ 25° 5° 21°08" 25°
6° 2°23"  24° 6° 13°31” 24° 6° 21°18 24°
7° 2°47"  23° 7° 13°51° 23° 7° 21°28’ 23°
8° 3°10”  22° 8° 14°10" 22° 8° 21°38’ 22°
9° 3°34"  21° 9° 14°30° 21° 9° 21°48" 21°
10° 3°58”  20° 10° 14°49 20° 10° 21°57" 20°
11° 4°21"  19° 11° 15°07" 19° 11° 22°05’ 19°
12° 4°45"  18° 12° 15°26" 18° 12° 22°13° 18°
13° 5°08" 17° 13° 15°44" 17° 13° 22°21" 17°
14° 5°31°  16° 14° 16°02" 16° 14° 22°28’ 16°
15° 5°54"  15° 15° 16°20° 15° 15° 22°35" 15°
16° 6°18"  14° 16° 16°37" 14° 16° 22°42' 14°
17° 6°41"  13° 17° 16°55 13° 17° 22048’ 13°
18° 7°04"  12° 18° 11°11’ 12° 18° 22°53' 12°
19° 7°26"  11° 19° 17°28’ 11° 19° 22°59 11°
20° 7°49"  10° 20° 17°44" 10° 20° 23°03’ 10°
21° 8°12’ 9° 21° 18°00” 9° 21° 23°08" 9°
22° 8°34' 8° 22° 18°16 8° 22° 23°12 8°
23° 8°56" 7° 23° 18°31” 7° 23° 23°15° 7°
24° 9°19’ 6° 24° 18°46" 6° 24° 23°18’ 6°
25° 9°41” 5° 25° 19°01" 5° 25° 23°20° 5°
26° 10°02° 4° 26° 19°15 4° 26° 23°22' 4°
27° 10°24’ 3° 27° 19°29” 3° 27° 23°24’ 3°
28° 10°46 2° 28° 19°43" 2° 28° 23°25" 2°
29° 11°07’ 1° 29° 19°56° 1° 29° 23°26’ 1°
30° 11°28° 0° 30° 20°09 0° 30° 23°26" 0°

=) =) (Water- = (Goat-

+  (Fishes) + Pourer) + Horn)

Decl. Virgin Decl. Lion Decl. Crab

The names of the southern signs are in parentheses. In these signs the declinations are negative.

As a less trivial example, consider the point on the ecliptic with longitude
Ram 25°. The declination of this point is 8 = 9°41”. That is, when the Sun
comes to Ram 25°, it will be 9°41” north of the equator. This information is
useful for a number of applications, for instance, in computing the Sun’s
noon altitude.

Suppose that we are located at north latitude L = 48° on the day that the
Sun reaches longitude Ram 25° (April 15). From the table of obliquity (table
2.3), we find that the Sun’s declination is 8 = 9°41”. Then, at noon the Sun’s
zenith distance will be

z=L-9
= 48° — 9°41
=38°19".

(Refer to sec. 1.12 and fig. 1.38 if necessary.) The Sun’s altitude 6 is the
complement of its zenith distance: 6 = 90° — z = 51°41".

Note that in table 2.3, there is one other point on the ecliptic with declina-
tion 9°41’, namely Virgin 5°. The signs of the Ram and the Virgin are situated
similarly with respect to the equator, as figure 2.2 illustrates, so the first column
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of declinations in the table serves for both signs. Similatly, the second column
of declinations serves both for the Bull and the Lion: the two points Bull 10°
and Lion 20° have dedclination 14°49’. For the six signs below the equator,
the declinations should be regarded as negative. These signs are written within
parentheses in the table. For example, the declination of the tenth degree of
the Archer (and of the twentieth degree of the Goat-Horn) is —21°7".

Our table was computed for use in the last half of the twentieth century,
when the obliquity of the ecliptic has the value 23°26". It corresponds to the

table given by Ptolemy in Almagest 1, 15, which is based on an obliquity of
23%1"20”.

Historical Specimen

Figure 2.18 is a photograph of a table of obliquity in a fourteenth-century
manuscript of the Affonsine Tables, now in the Bibliothéque Nationale, Paris.
The Alfonsine Tables were compiled around a.p. 1270 under the patronage of
Alfonso X, King of Castile and Leon (Spain). The original Spanish version
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FIGURE 2.18. A table of obliquity from a four-
teenth-century manuscript of the Alfonsine Tables.
Bibliothéque Nationale, Paris (MS. Latin 7316A,
fol. 114v).
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e

FIGURE 2.19.

o

of the tables is lost, but by about a.p. 1320, copies of the Spanish tables
reached Paris, where they were reedited by one or several Parisian astronomers.
From Paris, the revised form of the Alfonsine Tables was quickly disseminated
throughout Latin-reading and -writing Europe. For two hundred years or
more, these were the standard astronomical tables in use hroughout the Latin
West.”® The Alfonsine Tables exhibit a number of interesting innovations in
arrangement and layout but they were, in basic principle, modeled on the
ancient Greek tables of Ptolemy’s Almagest. No more striking demonstration
could be desired of the thousand-year continuity between Greek astronomical
practice and the astronomy of the Middle Ages and the Renaissance.

The manuscript is neatly lettered in black and red ink. The table of obliquity
is headed (if we write out fully a number of abbreviations) Tabula declinationis
Solis in circulo Signorum: “Table of the declination of the Sun in the circle
of signs.” The names of the northern signs, numbered o through s, run from
left to right across the top of the table, beneath the main heading: Aries,
Taurus, . . . Virgo. Similarly, the names of the southern signs, numbered 6
through 11, run from right to left across the bottom: Libra, Scorpio, . . . Pisces.
The numerals are written in a common version of their medieval forms:

o1 23 45 67 89

ozzj}zqc‘/\sp

At the upper left corner is the heading for the leftmost column of the
table: “Equal degrees of the upper signs.” Below, the numbers run down from
1 to 30. These numbers are for use with the signs whose names appear at the
top of the table. Similarly, in the lower left corner is the label for the second
column of the table: “Equal degrees of the lower signs.” The numbers run
up from o to 29 and are for use with the signs whose names appear at the
bottom of the table.

Within the column for each sign, the Sun’s declination is given in degrees,
minutes, and seconds. For example, when the Sun is at the 1oth degree of
Aries, its declination is 3°58"26” north of the equator. From the declination
of the Sun for the 30th degree of Gemini we see that the table is based on a
value of the obliquity of the ecliptic of 23°31'15”. This is an accurate value
for its time. In A.D. 1400, the obliquity of the ecliptic was indeed approximately
23%31".

Mathematical Postscript

It is not necessary to know how the table of obliquity was computed in order
to use it. However, for the sake of completeness, we present a postscript on
the method of computation.

In figure 2.19, P is the north pole of the equator. A4 is the ecliptic point
whose dedlination is desired. Draw the great circle arc PA and extend it until
it reaches the equator at B. Arc AB is the declination that is sought. The law
of sines applied to the right spherical triangle Y’ AB yields

sin A sin 8
sin 90° sin €’

where A = Y4 (the Sun’s longitude) and 8= AB (the Sun’s declination).
Thus,

sin ®=sin € sin A.

From this formula, the declination of point A is easily calculated in terms of
its longitude and the obliquity of the ecliptic €.



2.12 EXERCISE: USING THE TABLE OF OBLIQUITY

1. Find the declination of each of these points of the ecliptic: Bull 15°,
Virgin 20°, Scorpion 10°, Water-Pourer 15°.

2. When the Sun is at Ram 25°, how long a shadow will a vertical gnomon
cast at noon in Columbus, Ohio (latitude 39°58” N)? Express the length
of the shadow in terms of the gnomon’s height.

3. Suppose you are shipwrecked on a desert island on August 24 and have
no idea of your location. You do happen to remember, however, that
August 24 is the date on which the Sun reaches the beginning of the
sign of the Virgin. You set up a vertical gnomon 100 ¢cm high and find
that at noon it casts a horizontal shadow 26 ¢cm long that points toward
the north. What is the latitude of your island?

4. An astronomer at Searttle (latitude 47°40" N) wanted to determine the
exact time of the Sun’s entry into the sign of the Bull in the year 1980.
Since Bull 0° is 30° beyond the vernal equinox, and since the Sun moves
roughly 1° in longitude per day, the astronomer knew that the Sun’s
entry into the Bull would take place within a few days of April zo0.
Therefore, the astronomer measured the Sun’s altitude at noon on several
days before and after April 20, with the following results:

Date Noon
(local noon, altitude
Seattle) of Sun
April 17 53° 05
18 53° 26’
19 53° 47°
20 54° 06’
21 54° 27’
22 54° 48
23 55° 07°

Use these data to determine, to the nearest hour, the date of the Sun’s entry
into the sign of the Bull in the year 1980.

2.13 THE RISINGS OF THE SIGNS!:
A TABLE OF ASCENSIONS

The method of telling time by the risings of the zodiacal constellations de-
scribed in section 2.6 is inexact. This inexactness has two sources: (1) the use
of irregular constellations instead of the uniform zodiac signs and (2) the
assumption that all the signs that rise during a given night rise in equal times.
More precise time reckoning is possible if one knows the actual amount of
time required for each sign to rise. A list of the rising times of the signs, called
a table of ascensions, turns out to have many uses.

A Ptolemaic Table of Ascensions

Table 2.4 is modeled on Prolemy’s in Almagest 11, 8. The parallels for which
the rising times are given are specified in two ways: by means of the latitude,
and by the length of the solstitial day. For example, the parallel of Mobile,
Alabama, is that whose latitude is 30°5t” and whose solstitial day is 14 equinoc-
tial hours.

In table 2.4 the rising times are expressed, not in hours, but in “time-
degrees,” where 360° represents one whole diurnal revolution. For example,
at the latitude of Mobile, the first ten-degree segment of the Ram rises in
6°49" (degrees of time), the second ten-degree segment of the Ram rises in
6°s7’, and so on.
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TABLE 2.4. Table of Ascensions

Right Sphere
12 hours, Lat. 0°

Parallel through

Guatemala

13 hours, lat. 16°46”

Parallel through
Mobile, Ala.

14 hours, lat. 30°51”

Signs Tens Time Total Time Time  Total Time Time  Total Time
10 9°11’ 9°11" 8°00" 8°00" 6°49 6°49
Ram 20 9°17" 18°28’ 8°06" 16°06 6°57’ 13°4¢
30 9°27 27°55 8°19 24°25 7°11 20°57
10 9°41" 37°36° 8°37 33°02 7°33 28°30’
Bull 20 9°57" 47°33" 9°00" 42002 8°03 36°33
30 10°16" 57°49’ 9°27" 51°29’ 8°37 45°10
10 10°33" 68°22 9°55” 61°24" 9°16" 54°26/
Twins 20 10°45" 79°07 10°217 71°45" 9058’ 64°24’
30 10°53" 90°00’ 10°45" 82°30/ 10°36" 75°00
10 10°53’ 100°53" 11°01” 93°31” 11°09” 86°09
Crab 20 10°45 111°38’ 11°09” 104°40" 11°34" 97°43"
30 10°33" 122°117 11°10” 115°50" 11°49’ 109°32’
10 10°16 132027’ 11°05" 126°55" 11°54" 121°26"
Lion 20 9°57° 142°24" 10°55" 137°50 11953 133°19
30 9°41 152°05° 10°45" 148°35’ 11°49" 145°08’
10 9°27’ 161°32’ 10°35" 159°10” 11°42 156°50"
Virgin 20 9°17’ 170°49" 10°27” 169°37° 11°36" 168°26"
30 9°11” 180°00" 10°237 180°00” 11°34 180°00"
10 9°11’ 189°11’ 10°23" 190°23’ 11°34" 191°34"
Scales 20 9°17* 198°28" 10°27 200°50" 11°36" 203°10
30 9°27 207°55" 10°35° 211°25 11°42 214°52"
10 9°41’ 217°36' 10°45° 222°10" 11°49 226°417
Scorpion 20 9°57" 227°33 10°55” 233°05 11°53" 238°34"
30 10°16 237°49’ 11°05" 244°10 11°54 250°28’
10 10°33’ 248°22" 11°10 255°20" 11°49 262°17°
Archer 20 10°45 259°07 11°09’ 266°29" 11°34 273°51
30 10°53° 270°00” 11°01” 277°30" 11°09” 285°00"
10 10°53’ 280°53" 10°45 288°15’ 10°36' 295°36
Goat 20 10°45" 291°38’ 10°21° 298°36’ 9°58" 305°34"
30 10°33 302°11° 9°55 308°31’ 9°16’ 314°50’
10 10°16’ 312927 9°27’ 317°58’ 8°37 323°27°
Water- 20 9°57" 322°24" 9°00" 326°58" 8°03’ 331°30’
Pourer 30 9°41” 332005’ 8°37’ 335°35" 7°33 339°03"
10 9°27" 341°32" 8°19" 343°54’ 7°11” 346°14"
Fishes 20 9°17 350°49" 8°06° 352°00” 6°57 353°11"
30 9°11” 360°00" 8°00" 360°00” 6°49" 360°00”

If we want to express this in terms of ordinary hours and minutes, we
need only multiply by the conversion factor (24 hours/360°), that is, 1’/15°.
So, the rising time of the first ten-degree segment of the Ram is (6°49") X

(1"/15°) = 2716

Another way of looking at this is in terms of a sign’s co-rising segment of
the celestial equator. At Mobile, the first 10° of the Ram rise in the same
amount of time as it takes 6°49” of the equator to rise. Indeed, Ptolemy
expresses his “rising times” in just this way, that is, in terms of the arc length
of the equator that rises in the same time as the sign.

The column headed “total time” may be interpreted as the time at which
each ecliptic point rises, measured from the rising of the vernal equinox.
For example, at the latitude of Mobile, the 30th degree of the Ram rises
20 §7/60 time-degrees after the equinoctial point rises.

The columns for the “Right Sphere” apply to places on the Earth’s equator.
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TABLE 2.4. (continued)

Parallel Through Parallel Through Parallel Through
New London, Conn. Vancouver, B.C. Ketchikan, Ala.
15 hours, lat. 41°27” 16 hours, lat. 49°05" 17 hours, lat. 54°33’
Signs Tens Time  Total Time Time Total Time Time Total Time
10 5°417 5°41" 4°37 4°37 3°37 3°37
Ram 20 5°49’ 11°30° 4°44’ 9°21" 3°44’ 7°21

30 6°06’ 17°36" 5°02’ 14°23 4°00’ 11°21
10 6°30° 24°06 5°27° 19°50 4°27 15°48’
Bull 20 7°03’ 31°09 6°04 25°54 5°04 20°52"
30 7°46' 38°55’ 6°53 32047 5956 26°48"
10 8°36 47°31" 7°53" 40°40" 7°06 33°54
Twins 20 9°32’ 57°03 9°03" 49°43’ 8°30 42024’
30 10°27 67°30° 10°17 60°00’ 10°06’ 52°30°
10 11°18 78°48’ 11°28" 71°28’ 11°40 64°10°
Crab 20 12°00 90°48’ 12°29 83°57° 13°01 77°11"
30 12°29 103°17° 13°12 97°09’ 13°59 91°10/
10 12°45’ 116°027 13°39” 110°48’ 14°35" 105°45"
Lion 20 12052 128°54 13°51” 124°39’ 14°51 120°36
30 12052/ 141°46 13°54° 138°33’ 14°56’ 135°32°
10 12°48’ 154°34’ 13°52° 152°25 14°53’ 150°25
Virgin 20 12°44 167°18° 13°49 166°14 14°49 165°14
30 12042 180°00° 13°46 180°00 14°46 180°00
10 12042 192°42’ 13°46’ 193°46 14°46 194°46’
Scales 20 12°44’ 205°26 13°49° 207°35" 14°49’ 209°35"
30 12°48 218°14 13°52° 221°27 14°53 224°28'
10 12°52° 231°06° 13°54 235°21 14°5¢’ 239°24’
Scorpion 20 12052’ 243°58’ 13°51 249°12 14°51 254°15
30 12945 256°43" 13°39 262°51° 14°35 268°50/
10 12°29 269°12 13°12 276°03 13°59 282°49
Archer 20 12°00°  281°12 12°29 288°32’ 13°01° 295°50"
30 11°18 292°30 11°28 300°00 11°40/ 307°30
10 10°27°  302°57 10°17 310°17 10°06"  317°36°
Goat 20 9°32’ 312°29 9°03’ 319°20° 8°30°  326°06’
30 8°36 321°05 7°53 327°13 7°06' 333°12
10 7°46" 328°51” 6°53’ 334°06’ 5°56 339°08

Water- 20 7°03 335°54’ 6°04’ 340°10 5°04’ 344°12
Pourer 30 6°30 342024 5927 345°37 4°27 348°39

10 6°06’ 348°30 5°02° 350°39 4°00 352°39
Fishes 20 5°49° 354°19 444 355°23" 3°44 356°23

30 5°41 360°00 4°37 360°00 3°37’ 360°007

Here, the celestial sphere is said to be “right” because the tropics and equator
are perpendicular to the horizon.

Table 2.4 differs from Ptolemy’s table in a number of minor ways. First,
we have reduced the length of the table by eliminating the half-hour climes.
Prolemy included the climes of 12 1/2, 13 1/2, 14 1/2, 15 1/2, and 16 1/2 hours.
Second, our table is founded on the modern value 23°26” for the obliquity
of the ecliptic, rather than Ptolemy’s value 23°51"20”, which produces minor
numerical differences in the table. The final and most obvious difference is
in the place names associated with the parallels. Where Ptolemy has the lower
part of Egypt (14 hours), we have Mobile.

The table of ascensions is a versatile tool allowing easy solution of many
different kinds of problems. The advantage offered to the user of such a table
is that the compiler of the table has already done the trigonometry. All that is
required of the user is some simple arithmetic.
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Directions for Using the Table of Ascensions

The use of the table of ascensions is easy but requires close attention. Rather
than doggedly reading straight through the directions for all the applications,
the reader is advised to read only the first one or two, and then try the
analogous problems in the exercise of section 2.14. The reader may then
proceed with more confidence to the other applications. The directions are
modeled on Prolemy’s in Almagest 11, 9, but are supplemented by worked
examples (not to be found in the Almagest).

Length of the Day or Night

Example: How long is the day at latitude 49° when the Sun is in the 20th
degree of the Lion (i.e., on August 13)?

The six signs following the Sun all rise in the course of the day. Therefore,
we compute the rising time for the half of the zodiac starting at the Sun (Lion
20°) and extending eastward to the diametrically opposite point of the ecliptic
(Water-Pourer 20°).

This may be done by adding up the rising times for the successive 10°
segments of the ecliptic, starting with the last third of the Lion and extending
to the first two-thirds of the Water-Pourer:

13° 54" (latitude 49°)

13° 52
13° 49
13 46

6° 5%

+ 6° 04’
Toral 215° 31

The same result is found more easily by subtracting the total time for the arc
Ram 0° — Lion 20° from the total time for the arc Ram 0® — Water-Pourer

20°%:

340°10" — 124°39" = 215°31".

This arc may be converted to equinoctial hours if desired. As 15° correspond
to one hour, we divide by 15 to effect the conversion to hours:

o7 ho_m I
= X —.
215731 (215 31 ) 5

The division by 15 is most easily accomplished by the technique explained in
section 2.G; that is, we write 1/15 as 4/60 and exploit the base-60 character of
the ordinary units of time:

b _m 1 b om 4

X — = X =

(215731") s (215731") =
= (21537°) X 4

5
=14"22"4.

This is the length of the day that was sought.

The length of the night may be found in a similar way, by computing the
rising time of the ecliptic arc stretching from the point opposite the Sun
castward to the Sun itself, or by simply subtracting the daylight period from
a whole cycle:



length of the night = 360° — 215°31"
=144°29
=9'38".

The result is in any case only an approximation—although a very good
one. In the first place, the method assumes that the Sun remains at the same
point of the ecliptic all day long, rather than moving the better part of a
degree. Second, atmospheric refraction will cause the Sun to become visible
a licde before its geometrical rising and to remain visible a little after its
geometrical setting. And, finally, daybreak really occurs when the upper limb
of the Sun crosses the horizon, while the method of calculation applies to the
center of the Sun’s disk. However, all these effects combined will affect the
length of the day by only 15" or so.

Conversion of Times As we have found, on August 13 at 49° N latitude, the
day lasts 14722" (equinoctial hours). If we divide by 12, we find how many
equinoctial hours correspond to one seasonal hour:

1 seasonal (day) hour = 'n”

The length of a night hour may be computed in the same way. Dividing the
length of the night, which is 938", by 12 we obtain

1 seasonal (night) hour = 48”.

Note that one seasonal day hour and one seasonal night hour always sum to
two equinoctial hours.

Finding the Rising Point of the Ecliptic, Given the Seasonal Hour ~Suppose we
are given the date and the seasonal hour and are required to find the degree
of the ecliptic that is rising. First, convert the seasonal hour to time-degrees.
The resulting number expresses the time elapsed since sunrise (for a day hour)
or since sunset (for a night hour).

Then, in the case of the day, enter the table for the appropriate latitude
at the Sun’s point and take ourt the total time. Add to this the time-degrees
elapsed since sunrise, rejecting one cycle of 360° if the total exceeds this. Find
in the table the degree of the ecliptic corresponding to the total. This will be
the degree of the ecliptic that is rising at the given time.

In the case of the night, one proceeds similarly, but the table is entered
with the point opposite the Sun rather than with the point of the Sun itself.

Example: Latitude 49°; the Sun is in Lion 20°; the time is three (seasonal)
hours after sunset. Which point of the ecliptic is rising?

We found above that, for the given latitude of the observer and the given
place of the Sun, the nighe lasts 144°29” (time-degrees). Three seasonal hours
are one-fourth of this total, or 36°07". At sunset the ecliptic point opposite
the Sun (Water-Pourer 20°) is rising. We take, from the table for latitude
49°, the total time for this point and add the elapsed time:

Oblique ascension of point opposite Sun 340° 10’
Time elapsed since this point’s rising 36° 07

Total 376° 17

Reject 360° 16° 17
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Going back to the table we find that this oblique ascension corresponds to a

point between Ram 30° and Bull 10°. Linear interpolation gives Bull 4°. This
is the point of the ecliptic that is rising at the given time.

Finding the Culminating Point of the Ecliptic, Given the Hour Suppose we

A
o
H ‘ are given the date and the scasonal hour and wish to find the degree of the
" P (North ecliptic that is culminating (crossing the meridian in the south). It may seem
Pola of that the table of ascensions cannot be used to solve this problem, since the

the Earth}

table gives the time each sign requires to cross the horizon—not the times
required to cross the meridian. However, the table can indeed be used, because
the meridian through any point on the Earth is equivalent to the horizon of some
place on the Earth’s equaror. In figure 2.20, the meridian plane through A is
FIGURE 2.20. represented by line PAE and is parallel to the horizon plane at F, a point
located 90° farther west than E. This means that the signs will cross the
meridian anywhere on Earth in just the same way as they cross the horizon
at the equator. Thus, Ptolemy directs his reader to use the table of ascensions
for the right sphere in solving meridian problems.

The method: Express the seasonal hour in time-degrees, reckoned from
noon for a day hour, or from midnight for a night hour, rather than from
sunrise or sunset. Enter the table of ascensions for the right sphere (regardless
of the actual latitude) with the point of the Sun (day) or with the point
opposite the Sun (night). Add algebraically the time elapsed since noon or
midnight, and find the degree of the ecliptic corresponding to the total time,
again using the table for the right sphere. The result will be the degree of the
ecliptic that is culminating at the given time.

Example: Latitude 49°; the Sun is in Lion 20°; the time is three seasonal
hours after sunset. Which point of the ecliptic is culminating?

The time is three seasonal hours before midnight. As we already have shown,
three night hours for the given place and date amount to 36°07" of time. We
enter the table for the right sphere with the place opposite the Sun (Water-
FIGURE 2.21. Pourer 20°) and take out the value 322°24". This represents the roral time at
the moment of midnight, that is, the moment when the point opposite the
Sun crosses the meridian. As we wish a time somewhar earlier than this, we
subtract the three seasonal hours:

Longitude?

RA 34°39'

Total time at midnight 322° 24
Less three seasonal hours -36° 07’
Difference 286° 177

286°17 is the total time at the desired moment. In the table for the right
sphere, this time corresponds to Goat-Horn 15°, which is therefore the ecliptic
point culminating at the given moment. Again, the essential feature is that
the horizon at the equator plays the role of the meridian.

Finding the Degree Culminating, Given the Degree Rising  Since this problem
does not involve the time of day, we will find it easier if we interpret the
table of ascensions slightly differently than we have so far. The entry we have
so far called “total time” should now be regarded as the right ascension of the
equatorial point that rises at the same time as the given ecliptic point. For
example, at latitude 49°, let Lion 20° be rising. The table gives 124°39": this is
the right ascension (measured in degrees, rather than the usual hours) of the
point of the equator thar rises simultaneously with Lion 20° (see fig. 2.21).
Now we wish to find the degree of the ecliptic culminating, given the
degree rising. Enter the table of ascensions for the appropriate latitude and
take out the right ascension of the co-rising equarorial point. Subtract 90° to
find the right ascension of the equatorial point that is simultaneously culminat-



ing (since there always is a 90° arc of the equator between the horizon and
the meridian). Then go to the table of ascensions for the right sphere (used
to represent the meridian) and find the point of the ecliptic that culminates
with this point of the equator.

Example: At latitude 49°, when Lion 20° is rising, which point of the
ecliptic is culminating?

R.A. of equatorial point that rises with Lion 20° 124° 39
(table for 49° latitude)
Less 90° of R.A. —90° 00

R.A. of the equatorial point on the meridian 34° 39

(R.A. = right ascension.) We go to the table for the meridian (i.e., the table
of ascensions for the right sphere) and find that this right ascension corresponds
to Bull 7°. So, at latitude 49°, when Lion 20° is rising, Bull 7° is on the
meridian.

Our explanation of this use of the tables is more detailed than that of
Ptolemy, who gives no numerical example but only general, rather terse,
directions. Nor does he explain why one subtracts the 90° for the quadrant
of the equator, but simply states the rule. Perhaps he felt that this procedure
would be transparent to the average reader of his work!

Equatorial Coordinates of an Ecliptic Point  Finally, let us point out an applica-
tion used by Ptolemy, but not explained in so many words by him. The table
of ascensions for the right sphere, together with the table of obliquity, can
be used to determine the equatorial coordinates (right ascension and declina-
tion) of a point on the ecliptic. To review these coordinates, see section 2.9
and figure 2.14.

Example: What are the equatorial coordinates of Fishes 0°? (The zeroth
degree of the Fishes is at longitude 330°, latitude 0°. We wish to convert
these ecliptic coordinates into equatorial coordinates.)

Entering the table of ascensions (table 2.4) for the right sphere with Water-
Pourer 30° (the same point as Fishes 0°), we take out o = 332°05". This is the
right ascension of the point in question, expressed in degtrees rather the usual
hours. If we wish to express this quantity in the usual fashion, we divide by 15,
with the result o = 22"08”. To obtain the declination, we enter the table of
obliquity (table 2.3) with the zeroth degree of the Fishes and find & = —11°28".

Historical Notes

The risings of the signs were first studied because of their usefulness in telling
time at night. Already in the Phenomena of Aratus (third century B.C.) it is
noted that in any night six signs rise and six set, and that one can tell the
time by looking to see which sign is rising. Commentators on Aratus often
took pains to explain how it can be that in every night six signs rise, even
though the nights are of unequal durations.

The mathematical attack on the problem began shortly after Aratus’s time.
In section 2.15 we shall see how, in the second century B.C., Hypsicles of
Alexandria applied the Babylonian method of the arithmetic progression to
obtain an approximate numerical solution. In a very short time (later in the
second century B.C.), Hypsicles’ work was made obsolete by the development
of trigonometric methods, which for the first time made possible an exact
solution of the old problem. By Ptolemy’s time (second century A.p.), the
problem was so completely solved that convenient tables were available to the
astronomer and astrologer for practical use.

Most of the work in book II of the A/mages: is not original with Ptolemy.
The subjects treated there (gnomon problems, climes, day lengths, ascensions
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of the zodiac signs, etc.) were treated earlier by Hipparchus (second century
B.c.) and others. In a number of example calculations that illustrate the
construction of the tables, Prolemy uses the latitude of Rhodes—a fact that
Tannery” took as evidence that Prolemy simply reproduced a treatise by
Hipparchus, who worked at Rhodes. It may be so, but Prolemy’s use of
Rhodes is no proof of it. Still, it is likely that Prolemy was able to borrow
something from the work of his predecessor.

Strabo® says that Hipparchus had given in tables, for all the places situated
between the equator and the north pole, the various changes that the state
of the sky presented. If Hipparchus really did construct such tables, Prolemy
may have had access to them. Very likely, Prolemy’s main contribution to
this branch of astronomy was to refine the methods of calculation and to
extend the scope of the tables. This should not be read as disparaging of
Ptolemy: one does not blame the inventor of the automobile because he did
not also invent the horse.

The contents of Almagest 11, including the table of ascensions, became a
standard part of ascronomical knowledge. Every subsequent astronomical work
that purported to be complete had to include the same material. For example,
book II of Copernicus’s On the Revolutions of the Heavenly Spheres (1543)
covers this same ground. Copernicus’s table of ascensions is based on a slightly
smaller value of the obliquity of the ecliptic (23°29") and gives the cumulative
rising times for every sixth degree along the ecliptic (rather than every tenth
as in Prolemy) for latitudes running from 39° to 57° by 3° steps. In more
recent times, the interest in horizon problems gradually died out, and the
table of ascensions dropped out of the textbooks.

Finally, we should say something of the applications of the table of ascen-
sions to Greek astrology. In making a prognosis for any person or event, it
was essential to know the state of the heavens at the moment in question.
For a person, this would be the moment of birth (or of conception, if known);
for an event, for example, the accession of a king, the moment of the event
itself. One of the most important points in the heavens was the horoscope—the
degree of the ecliptic that was rising at the given moment. The importance
of the horoscope is reflected in the fact that its name later came to signify
the entire chart or method by which predictions are made. Now, why was
the degree of the ecliptic that was rising called the horoscopic point? The
Greek hora is the word for the hour of the day. Skopos is an object on which
the eye is fixed, a mark. So the horoskopos is the “hour mark”—the sign one
uses to tell the time during the night. This term originally had no astrological
connotation, but was bound to acquire one due to its astrological applications.

The horoscope could not be determined accurately unless the time was
known to within a fraction of an hour. In his work on astrology, Prolemy”
criticizes the majority of astrologers because of their use of sundials and water
clocks. The first of these are liable to error due to shifts of their positions or
of their gnomons, and the second due to irregularities in the flow of their
water. Only observation by means of horoscopic astrolabes ar the time of birth
can give the minute of the hour. Prolemy’s astrolabe probably corresponds to
what we would call a quadrant or a sextant, that is, a graduated circle equipped
with sights by which the altitudes of stars above the horizon can be taken.
Once the time is accurately known, it is possible to determine the degree of
the zodiac that is rising; this is done, as Prolemy says, by the method of ascensions,
that is, by the use of tables like those we have discussed.

Historical Specimen

Figure 2.22 is a photograph of part of the table of ascensions in a Greek
manuscript copy of Ptolemy’s Almagest. This manuscript, copied in the ninth
century and now more than a thousand years old, is one of the oldest surviving
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copies of the Almagest. It is written on large sheets (44 X 33 cm) of heavy
parchment and is still in excellent condition. The parchment was carefully
scored with a sharp point that made visible scratches in the surface to guide
the writing—one continuous horizontal scratch for every line of writing. (These
are invisible in the photograph.) The text was carefully written in black ink,
but the figures and the rulings for the tables were mostly drawn in red.

The leftmost column is headed ZwAwo,, “signs.” Beneath the heading are
the names of the twelve signs of the zodiac: Kplog (Aries), Towwpog (Taurus),
and so on. The second column is headed “ten-degree segments.” Beneath the
heading run repeating cycles of the numbers 10, 20, 30 (1, K, A). These columns
correspond exactly to the first two columns of table 2.4.

The next pair of columns gives the rising times of the ten-degree segments
of the ecliptic for the clime of 15 hours, that is, for the parallel through the
Hellespont (latitude 40°56”). The first parts of these columns are translated
in figure 2.23. The values of the rising times may be compared with those in
table 2.4. Our values differ slightly from Ptolemy’s because they are based on
a slightly different value for the obliquity of the ecliptic.

The last two pairs of columns of the manuscript page are for the climes

FIGURE 2.22. Part of the
table of ascensions from 2
ninth-century parchment
manuscript of the Almagest.
Bibliothéque Nationale, Paris
(MS. Grec 2389, fol. 44v).

‘en-
Degree
Segmenty

Degrees Minutes Totals
Ram 10 5 40 5 40
20 5 47 11 27
30 6 5 17 32
Bull 10 6 29 24 1
20 7 4 31 5

FIGURE 2.23. Translation of the upper left
corner of figure 2.22.
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of 15 1/2 hours (middle of the Pontos, or Black Sea) and 16 hours (mouth of
the river Borysthenes, the modern Dnieper).

Mathematical Postscript

It is not necessary to know how tables of ascensions are calculated in order
to use them. However, for the sake of completeness, 2 method of calculation
is outlined here. Readers who are not on friendly terms with trigonometry
may skip this postscript.

Oblique Ascensions We shall need one theorem from spherical trigonometry.
Refer to figure 2.24. Let 4, b, ¢ denote the sides of a right spherical triangle,
and A4, B, C, the opposing angles. Let C be the right angle. Then

FIGURE 2.24.

sin # = tan & cot B.

For the problem of ascensions in the oblique sphere, refer to figure 2.25.
ABCD is the celestial meridian, BED the horizon, AEC the equator, and FGH
the ecliptic. G represents the vernal equinoctial point. K is the north pole of
the equator. From K, we drop a great circle arc through /, which meets the
equator perpendiculatly at M.

The angle € at G is the obliquity of the ecliptic. The angle between the
equator and the horizon is the co-latitude, that is, 90° — L where L is the
laticude of the place of observation.

At the moment represented in the figure, point / of the ecliptic is on the
horizon. It is clear that arc GJ of the ecliptic rises with arc GE of the equator.
H (The first point of each arc is the same, point G, and the last points of the

arcs, J and E, are on the horizon at the same time.) In a table of ascensions,
arc GE goes in as the total time opposite ecliptic longitude GJ. The problem,
then, is to calculate GE in terms of GJ.

In right spherical triangle G/M, we apply our theorem to obtain

(N.P. of Equaltor)

FIGURE 2.2§.
sin GM = tan /M cot €.

Note that /M is the declination of point J of the ecliptic. /M can therefore
be taken from the table of obliquity (table 2.3) for any desired GJ. Hence,
GM is determined.

In right spherical triangle £/M we apply the same theorem to obtain

sin EM =tan JM cot (90 — )
=tan /M tan L,

so EM is also determined.
The desired arc GE is the difference between our two results:

GE = GM - EM.

As an example, let us compute GE for the clime of 14 hours (L = 30%51)
and the case where J is the 30th degree of the Ram (GJ = 30°). We enter the
table of obliquity with Ram 30° and take out

JM = 11°28’.
Now we have

sin GM = tan (11°28") cot (23°26")
= 0.46800.
GM =274,



Similarly,
sin EM = tan (11°28") tan (30°s1)
= 0.12116.
EM = 6°58".
Finally,

GE=27%4" - 6°s%

=20°%6,

which is the number tabulated in the table of ascensions (to within a 1 minute
discrepancy attributable to rounding).

The method of calculating ascensions given here is more streamlined than
Ptolemy’s. The equivalent of the sine function was known and used in antiq-
uity, but the tangent was not. As a result, the ancient methods of calculation
are slightly more cumbersome.”

Latitudes and Solstitial Days  The Greeks identified parallels either by latitude
or by the length of the solstitial day. We shall see here how to calculate the
one if given the other.

Figure 2.26 presents a side view of the celestial sphere at the time of summer
solstice. The Earth is at E. The axis of the cosmos makes an angle Z with the
horizon, this angle being equal to the latitude of the place of observation.
The Sun is on the tropic of Cancer, north of the equator by an angle € equal
to the obliquity of the ecliptic. Line ABCD is a side view of the Sun’s day
circle. The radius of this day circle is

BD = r cos €,

where » = ED is the radius of the celestial sphere. Also,
EB = rsin €,

and thus,

BC=FEBtan L

=rsin € tan L.
Now, figure 2.27 presents a view of the sphere as seen looking down the axis.
Arc XDY is the part of the day circle lying below the horizon, and YZX is
the part above. Let us denote the length of the night at summer solstice by
Ns. Ns is related to ¢ by
0 = Ny X (360°/24") = Ny x (15°/").

We need only calculate ¢, the “night angle™:

cos (¢/2) = BC/BY.
But BY (= BD) and BC are both known. Thus,

i L
cos (0/2) = r Mn—,

r cos €

and we obtain

THE CELESTIAL SPHERE 1II9
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cos (Ng X 7.50/’]) =rtan € tan L.

This formula may be used to calculate the latitude L at which the shortest
night has some particular value V.

Example: Let us calculate the latitude where the summer solstidal day is
14 hours, and the night is 10:

tan L = cos (10" X 7.5°/")/tan (23°26")

=0.59714
L =30%T".

This is the latitude at which the shortest night lasts 10 hours, that is, the
latitude of the clime of the 14 hour solstitial day.

Finally, we should point out that our formula can be applied to find the
length of any night, not just the solstitial night. One simply uses the Sun’s
declination 0 for the day in question rather than the obliquity. That is, the
general formula is

cos (N x 7.5°/") = tan & tan L.

As an example, let us calculate the length NV of the night at latitude 30°51
when the Sun is at the zeroth degree of the Twins. Using the table of obliquity
(table 2.3) we find & = 20°29” when the Sun is at Twins 0°. So, we have

cos (N X 7.5°/") = tan (20°09’) tan (30°51")
= 0.21917.
N=cos™(0.21917)/(7.5%/")

b m
=1019 ,

which agrees with the length of the night given in table 2.2.

2.I14 EXERCISE: ON TABLES OF ASCENSIONS

Problems for the table of ascensions (table 2.4):

1. How long does the day last when the Sun is at the 20th degree of the
sign of the Scorpion (Nov. 13) in the clime of 16 hours (Vancouver)?
Express your answer in terms of equinoctial hours. (Answer: 9'7")

2. Suppose that, in the same situation as described in problem 1, a traffic
accident occurs 4 seasonal hours after sunset. Express the time in terms
of equinoctial hours. (Answer: 9:31 p.M.).

3. What are the equatorial coordinates of the ecliptic point at the 20th
degree of the Bull? Express the right ascension in terms of the usual
hours and minutes. (Answer: 0. = 310", § = +17°44".)

In problems 4—7, assume a clime of 14 hours (Mobile, Alabama) and
suppose the Sun is in the 30th degree of the Balance (October 24). Note
that you may check your answers with an armillary sphere or celestial
globe. The concrete model will not reveal very small errors, of course,
but if you go very far wrong in the table of ascensions, the armillary
sphere will warn you that something is amiss.

4. Find the length of the day in equinoctial hours, using the table of
ascensions.

5. Suppose an observation of the Moon is made at night, three seasonal
hours after sunset. Express the time in terms of equinoctial hours.



6. At the time given in problem s, which degree of the ecliptic is rising?

7. Which degree of the ecliptic is culminating?

8. Can one use the table of ascensions to solve problems for places on the
Earth south of the equator? If so, how?

9. Use the table of ascensions to compute the missing entries of table 2.2

(the length of the night).

2.1§ BABYLONIAN ARITHMETICAL METHODS IN
GREEK ASTRONOMY: HYPSICLES ON THE
RISINGS OF THE SIGNS

Tables of Ascensions before Ptolemy

Exact calculation of the rising times of the signs requires trigopnometry. The
oldest known table of ascensions constructed by exact trigonometric methods
is that of Prolemy, discussed in section 2.13. However, approximate solutions
of the problem were obtained earlier by purely arithmetical methods. In
particular, Hypsicles of Alexandria, in a little book on the rising times (Anapho-
rikos), which dates from the first half of the second century B.c., demonstrated
a plausible solution that can teach us a good deal about the state of mathematics
at that time.

Hypsicles of Alexandria  In Hypsicles’ time, Greek geometry was in full bloom:
Euclid’s Elements already was a century old; Apollonius’s treatise on the conic
sections and Archimedes’ mathematical works had been around for about half
that time. Hypsicles himself was an able mathematician. His book on the
dodecahedron and the icosahedron extended Euclid’s book XIII. But it is one
thing to prove a general proposition about triangles, or about the dodecahe-
dron, and quite another to resolve any given triangle, that is, to calculate
numerical values for its unknown angles and sides. The first sort of problem
belongs to geometry, for which the methods of Euclid suffice. The second
belongs to trigonometry, and its solution implies the knowledge of theorems
for the addition and multiplication of sines and cosines, and so on, and the
existence of trigonometric tables. These tools were not available to Hypsicles
but began to be developed shortly after his lifetime. His approximate calcula-
tion of the rising times of the signs represents the attempt of a highly developed
mathematics to come to grips with a problem that was essentially beyond the
scope of its powers.

Hypsicles” simplifying assumption is that the rising times of the signs
increase in arithmetic progression from the Ram to the Virgin, and decrease
in the same way from the Balance to the Water-Pourer. Let T denote the
time required for either the Ram or the Fishes to rise. (These are the signs
that rise most quickly.) Then, according to Hypsicles, the times required for
the signs to rise are as follows:

Ram T

Bull T+ x
Twins T+ 2x
Crab T+ 3x
Lion T+ 4x
Virgin T+ sx
Balance T+ sx
Scorpion T+ 4x
Archer T+ 3x
Goat-Horn T+ 2x

Water-Pourer T+x
Fishes T
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Here x stands always for the same increment of time. Of course, the rising
times do not really follow this simple pattern. Nevertheless, the assumption
of an arithmeric progression was a definite step forward. The simplest possible
hypothesis for the rising times would have made them all equal—two hours
each—but even cursory observation would have revealed its inadequacy, since,
at Alexandria for instance, the Ram rises in less than an hour and a half while
the Virgin requires nearly two and a half hours. Once one recognizes differences
among the rising times, the arithmetic progression becomes the simplest
possible way of accounting for them.

The Table Assuming the arithmetic progression and using the known ratio
of the length of day to that of night at the summer solstice (which is 7/5 for
the latitude of Alexandria), Hypsicles calculates the rising times given in the
second column of table 2.5. Hypsicles’ rising times are expressed, not in hours,
but in “degrees of time,” where 360° represents one whole diurnal revolution
(15 time-degrees = 1 hour). Another way of looking at this is in terms of a
sign’s co-rising segment of the equator. So, for example, the Ram rises in the
same amount of time as it takes 21 2/3° of the equaror to rise.

The arithmetic progression is apparent in Hypsicles’ results, for the rising
times change regularly from one sign to the next by 3°20’, which corresponds
to about 13 minutes. The actual rising times are given in the third column
table 2.5, as calculated trigonometrically by Ptolemy. The real times evidently
do not form an arithmetic progression; nevertheless, Hypsicles results follow
them fairly closely.

How the Table Is Constructed At summer solstice, the Sun is at the beginning
of the Crab. Six signs rise during the period from sunrise to sunset. These
signs, and their assumed rising times, are:

Crab T+ 3x
Lion T+ 4x
Virgin T+ 5x
Balance T+ sx
Scorpion T+ 4x
Archer T+ 3x

Total rising time 67 + 24x = length of the day.
During the night, the other six signs rise (from Goat-Horn through Twins).
Adding up their rising times, we obtain

6T + 6x = length of the night.

Now, Alexandria is in the clime of 14 hours. Thar is, at summer solstice,
the day lasts 14 equinoctial hours and the night lasts 10 equinoctial hours. If
we express these in terms of degrees of time, the day is 210°, the night 150°.
We thus obtain two equations in two unknowns:

6T + 24x=210°
6T + Gx=150°.

These equations suffice to determine T and x, with the result

o
T= 21E
3IO
x=3-
3

From these two values the whole table can be filled out.



TABLE 2.5 Hypsicles’ Table of Ascensions for the Parallel of Alexandria
(clime of 14 hours)

Hypsicles’ Prolemy’s
Sign Rising Times Differences Rising Times Differences
Ram 21°40 20°53’
+3°207 +3°19”
Bull 25°00 24°12
+3°20" +5°43"
Twins 28°20 29°55"
+3°20 +4°42"
Crab 31°40" 34°57"
+3°20" +0°59
Lion 35°00 35°36"
+3°20 —0°49
Virgin 38220/ 34°47"
0 0
Balance 38°20" 34°47"
—3°20/ +0°49
Scorpion 35°00" 35°36"
-3°20 —0°59’
Archer 31°40" 34°37"
—3°20" —4°42
Goat-Horn 28°20/ 29°55"
-3°20" —5°43"
Water-Pourer 25°00" 24°12'
—3°20’ -3°19
Fishes 21°40 20°53"

Arrangement of Hypsicles’ Book  Hypsicles” Anaphorikos is interesting from the
point of view of history of mathematics for its statement and proof of several
propositions about arithmetic series. Let a4, 4,, 4, ... a, be an arithmetic
progtession of 7 terms. That is, each term differs from the preceding one by
a constant difference 8. Thus, 4, = 4, + 8, 4, = 4, + §, and so on.

Hypsicles proves that if the number of terms in the series is even, the sum
of the series is

a+a,+a -+ +a,=n(a+ a).

That is, the sum of the series is equal to the number of terms times half the
sum of the first and last terms.

If the number of terms is odd, and 4, is the middle term, Hypsicles proves
that

ata+:+a,t+* " +a,=na,.

That is, the sum of the series is equal to the number of terms times the middle
term.
Hypsicles also proves that, if there are an even number of terms,

(sum of second half) — (sum of first half) = #°8/4.

Hypsicles does not, of course, use algebraic formulas. Moreover, he proves
his theorms for a specific number of terms (six). Hypsicles then applies these
theorems to the problem of determining the rising times of the signs at
Alexandria, assuming 14 hours for the length of the solstitial day. The algebraic
solution of the problem outlined above is a considerable simplification of
Hypsicles’ actual procedure.”
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Another interesting feature of Hypsicles’ book is its division of the circle
into 360 parts. Hypsicles’ is the earliest known Greek wotk to use the degree,
a Babylonian unit of measure. We have scen (sec. 1.2) that the Babylonians
divided the day into watches, which varied in length the course of the year,
like the Greeks’ secasonal hours. However, the Babylonian astronomers also
divided the whole 24-hour period into 360 parts, each of which is called one
US (degree). Thus, Hypsicles’ time-degree is of Babylonian origin.

Origin of Hyspicles’ Method and Its Later History

The use of the degree is only most obvious Babylonian influence in Hypsicles’
work. Indeed, the whole scheme of using an arithmetic progression to represent
the rising times of the signs is of Babylonian origin. The evidence for the
Babylonian origin of this method comes from cuneiform clay tablets of the
Seleucid period (third century B.c. and later). In fact, the Babylonians used
two slightly different versions of the system. In one system (called system A
by modern historians), the rising times form a strict arithmetic progression.
In the other (system B, of course), the rising times form an arithmetic progres-
sion with two exceptions: the change in rising times is twice as big as normal
(a difference of 2x rather than x) between Twins and Crab, and also between
Archer and Goat-Horn. (The values of T"and x for a given clime must therefore
be different in system B than in system A.)

The arithmetic progression in rising times was first deduced by Otto
Neugebauer from Babylonian values for the lengths of days at different times
of year. There is, after all, an intimate connection between the length of the
day and the rising times of the signs: the length of any day is equal to the
time it takes for six zodiac signs to rise, beginning with the Sun’s position.
However, the rising times of the signs also turn up explicitly on some tablets,
so there is no question that the Babylonians fully understood the whole system
we see discussed by Hypsicles.”

There are echoes of the Babylonian arithmetical scheme (both versions) in
many later Greek and Roman writers. For example, Geminus (Introduction
to the Phenomena V1, 38) says that the differences in the lengths of the days
themselves form an arithmetic progression. That is, the lengths of the days
form a progression of constant second differences. We shall see in the exercise
of section 2.16 that this results directly from the use of an arithmetic progression
for the rising times of the signs. Geminus thus seems to follow system A. But
Cleomedes® gives values for the day lengths that show an anomalous jump
characteristic of system B.

In many cases, it appears that later Greek and Roman writers were unaware
of the Babylonian origin of their schemes for rising times and day lengths.
Even after the development of trigonometry made the arithmetic methods
obsolete, many Greek and Roman astrologers continued to use the old arithme-
tic methods because they were easier than trigonometry. Moreover, the arith-
metic formulas for rising times and day lengths were taken up and used by
writers who did not even understand the connection between them. Thus,
Manilius, the author of a long Latin astrological poem (first century a.n.),
gives a list of rising times that follows system A® and a list of day lengths
that follows system B,” without realizing that these are inconsistent with one
another.

Many histories of Greek astronomy have tended to overemphasize its
cultural independence, its logical coherence, and its allegiance to philosophical
principles. Certainly, the Greek achievement in astronomy was remarkable—
one of the most remarkable in the history of science. But our brief examination
of arithmetic techniques in Greek astronomy provides a necessary corrective.



The dependence on Babylonian methods is quite clear. Moreover, the slapdash

use of these methods by some later writers shows that not every practitioner
s

of Greek astronomy was a Prolemy. Far from it!

2.16 EXERCISE: ARITHMETIC PROGRESSIONS AND
THE RISINGS OF THE SIGNS

1. Rising times of the signs: Use Hypsicles’ method (sec. 2.15) to calculate
the rising times of the signs at the Earth’s equator (clime of 12 hours).
Calculate also the rising times for the clime of 16 hours. Compare your
results with the exact rising times obtained from table 2.4. At which
clime—r2, 14, or 16 hours—does Hypsicles’ approximation work best?
How large are the errors?

2. Day lengths resulting from Hypsicles’ scheme: The assumption that the
rising times of the signs form an arithmetic progression leads to other
consequences. For example, it turns out that the lengths of the days
form a progression with constant second differences. The length of the
day when the Sun is at the beginning of the Goat-Horn (winter solstice)
can be found by adding the rising times for the six signs starting with
the Goat-Horn. This we did in section 2.15, with the result 67 + 6x.
Similarly, the length of the day when the Sun is at the beginning of
the Water-Pourer is found by adding the rising times for the six signs
starting with the Water-Pourer; the result is 67 + 7x. Continuing, we

get
Day lengths resulting from Hypsicles” scheme
Sun at Second
beginining of Length of day Differences  differences
Goatr-Horn 6T + 6x
x
Water-Pourer 6T+ 7x 2x
3x
Fishes 6T + 10x

Finish out the table and show that the day lengths form an ascending and
then a descending progression with constant second difference 2x.

For the clime of 14 hours, put in numerical values for 7 and x to determine
the day lengths. Plot a graph of day length versus the Sun’s position in the
zodiac. Plot the actual day lengths (from table 2.2) as well as the day lengths
resulting from Hypsicles’ assumption on the same graph. The use of day
lengths with constant second differences is mathematically equivalent to fitting
a parabola to the day-length curve. How well does this scheme approximate
the actual variation in the length of the day?

2.17 OBSERVATION: THE ARMILLARY SPHERE AS
AN INSTRUMENT OF OBSERVATION

The armillary sphere is a scale model of the celestial sphere. Thus, if the
model is properly aligned, it can show the actual orientation of the heavens.
This is the basis for the use of the armillary sphere as an instrument of
observation.

The directions below are given for the use of an armillary sphere. However,
they may also be applied to many celestial globes. The globe should be of
transparent plastic and should have an axis passing through it, with a miniature
globe of the Earth at the center. The globe must also have a horizon stand
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and a meridian ring that is adjustable for latitude. It will be helpful to make
the shadows of the ecliptic and the equator more visible. This can be done
by sticking narrow tape (e.g., typewriter correction tape) on the ecliptic and
on the equator, all the way around the globe. The two taped rings thus turn
the solid globe into an armillary sphere, if we imagine away the plastic surface

of the globe!

The Armillary Sphere As a Sundial Set up an armillary sphere (or celestial
globe) in a level, sunny place so that the meridian line on the base points
along the local terrestial meridian—that is, exactly in the north-south direction.
Also adjust the model for your own latitude. (The axis should make an angle
with the horizon that is equal to your latitude.) With these adjustments made,
the equator of the model lies parallel to the plane of the celestial equator, and
the axis of the model points at the celestial pole. That is, the axis of the model
is the axis of the universe.

Note that the shadow of the axis of the model falls on the equator ring,
which is marked in hours. As the day goes by, the Sun moves in a circle
around the axis, and the shadow will move along the equator ring. If it were
local noon the shadow would fall on the meridian, so you need simply count
the number of hour marks that separate the shadow from the meridian. This
will be the time of day, expressed in hours before or after local noon. The
sundial reads local Sun time, of course, and may depart from clock time.

The armillary sphere can also be made to read the time of day directly, in
24-hour military or international style. Turn the sphere until the vernal equinox
{and o-hour mark) coincides with the shadow of the axis. The time of day
will then be indicated by the hour mark of the equator that is crossing the
upper part of the meridian ring.

The armillary sphere is an example of an equarorial sundial. The simplest
possible version of such a dial would consist of only these essential parts: a
fixed ring in the plane of the equator, marked in hours, and a gnomon
perpendicular to it.

Using the Armillary to Measure the Longitude of the Sun  In using the armillary
sphere as a sundial, one must point the axis of the model at the celestial pole.
This involves adjustments only to the fixed circles of the model: the base and
the meridian ring. The movable part of the sphere (made up of ecliptic,
equator, etc.) can be turned at will without affecting the usefulness of the
dial. But if we wish to use the armillary to determine the longitude of the
Sun, we must position the movable sphere so that the ecliptic ring lies in the
plane of the true ecliptic.

To do this, adjust the model, as before, for the local meridian and latitude.
Then slowly turn the sphere about its axis until the shadow of the ecliptic
ring falls across the middle of the Earth globe in the center of the model.
Take a pencil point and run it along the ecliptic ring, keeping it perpendicular
to that ring, until the shadow of the pencil point also falls across the center
of the Earth globe. You should then see the shadow of the ecliptic and the
shadow of the pencil point intersecting in an X on the Earth globe. The
pencil point marks the Sun’s position on the ecliptic, so the Sun’s longitude
and the date may be read off.

One complication must be mentioned. On a given date, there may be two
different ways to orient the ecliptic ring that will produce a shadow of that
ring on the Earth globe. On April 20, for example, the Sun is 11° north of
the equator. On August 24 the Sun is again 11° north of the equator. The
length of the day, the rising direction of the Sun, and the lengths and directions
of shadows are all the same on August 24 as on April 20. Therefore, no single
observation made with sundial or armillary sphere will enable one to choose



between these two dates. But if one waits a few days after the original observa-
tion, the Sun will advance in longitude and its declination will change. If the
date was April 20 the Sun will move farther north. But if the date was August
24 the Sun will move south. So, a second observation will remove the ambiguity
in the first one.

The armillary sphere, equipped with sights, was Ptolemy’s chief instrument
for measuring the positions of stars and planets (see fig. 6.8 and sec. 6.4).°
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3.1 GREEK AND ROMAN SUNDIALS

Our knowledge of the scientific and technological activity of the ancients is
based mostly on the written testimony of the ancients themselves. The physical
(as opposed to textual) evidence for the scientific activity of the Greeks is
meager, for delicate scientific instruments tend not to survive. Objects pre-
served from antiquity tend to be made of relatively indestructible stuff: building
stone, ceramics, marble statuary. Thus, it should come as no surprise that
the corpus of some 250 Greek and Roman sundials, found ar sites all over
the Mediterranean, constitutes the great bulk of the physical evidence for the
place of astronomy in classical civilization.'

Varieties of Ancient Sundials

The ancient dial makers were very inventive and designed many different
kinds of dials. To judge by the number that survive, one of the most popular
kinds was the spherical dial. In its simplest form, this consisted of a hemispheri-
cal cavity cut into a block of stone. A gnomon was set into the stone with
its tip at the center of curvature of the cavity. This spherically shaped cavity
was a model of the celestial sphere. The concave surface of the cavity typically
was engraved with circles representing the tropics and the equator, as well as
with other curves that served to indicate the hours. The principal of the
spherical dial with central gnomon is illustrated in figure 3.1. This design,
however, would have been impractical. It would have been laborious to cut
a complete hemisphere out of stone. Besides, the cavity would have filled with
rain water. Fortunately, a complete hemisphere is not needed. The shadow
of the gnomon’s tip cannot fall just anywhere on the spherical surface. In
particular, the shadow tip can never fall outside the belt between the two
tropic circles. Therefore, the entire hemisphere is not needed, and the unneces-
sary portions of the block can be cut away as in figure 3.2. The popularity of
the spherical dial derived from its simplicity. Because the spherical dial is
merely a reduced version of the celestial sphere, the theory governing the
placement of the curves is very simple.

Many conical dials have also been found. Indeed, the known number of
this type exceeds even that of the spherical dials. In a conical dial, the shadow-
receiving surface is a portion of the inner surface of a cone. Typically, the
conical depression was cut into the edge of a rectangular slab of stone (fig.
3.3). The stoneworking involved in making a conical depression was simpler
than that required for a spherical cavity. But, by compensation, the theory
was slightly more complicated: it was necessary to project the celestial sphere
onto a conical surface.

About forty plane dials are also preserved. The theory underlying such dials
is more complicated than the theory of spherical or conical dials, for the
celestial sphere must be projected onto a plane surface. Some dials were
designed for horizontal receiving surfaces, others for vertical surfaces.

Two Horizontal Plane Sundials of the Hellenistic Period

Among the surviving Greek and Roman sundials engraved on plane surfaces,
there are fifteen that were designed to be horizontal. Figure 3.4 represents a
horizontal plane sundial pieced together from three fragments found in 1814
on the Vigna Cassini near the Via Appia, Rome.” The extant fragments form
approximately the left half of the dial, the portion bound by the wavy line
in the figure. The part of the dial to the right of the wavy line is a conjectural
restoration. This dial is made of white marble, and the extant portion measures
approximately 35 cm wide and 54 c¢m high. The marble is 36 cm thick.

The engraved line that runs vertically in the figure is the meridian. The
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upper part is the southern end of the dial, and the lower part, the northern
end. In use, the dial would lie on the ground, with its face horizontal and its
meridian aligned north-south. A trace of a gnomon hole is preserved on the
meridian line, at the broken right edge of the dial, just above the bat-wing
shape.

This bat wing is characteristic of all Greek and Roman horizontal plane
dials. The upper curve is the track of the tip of the gnomon’s shadow for the
day of summer solstice. The horizontal straight line below this is the shadow
track for the equinox. The lowermost curve is the shadow track for the winter

solstice. These three shadow tracks may be compared with figure 1.36.

The eleven more or less vertical lines in figure 3.4 are hour lines. These
indicate the time of day as the tip of the shadow crosses them one by one.
The hours are seasonal. That is, the period from sunrise to sunset consists
always of twelve hours, by definition. At sunrise, the gnomon’s shadow would
be infinitely long and would point to the west, that is, toward the right on
the figure. As the Sun rose higher, the shadow would shorten until the tip
FIGURE 3.2. Spherical dial with cutaway south  of the shadow reached the first hour line on the right. The time would then
face. Day circles are visible for winter solstice, be one seasonal hour after sunrise. The shadow would continue to shorten
equinox, and summer solstice. The dial has been  yntil noon, the sixth hour, when it would fall on the meridian. In the
cut away along the circle representing the tropic  ,fternoon, the shadow would lengthen, crossing the eleventh hour line (the
of Cancer (the day circle for summer solstice). last on the left) one seasonal hour before sunset.

This dial was engraved around its perimeter with the names of the winds,
in Greek. On the preserved part of the dial, the wind names are

Also visible is a family of curves for the seasonal
hours.

Notos South
Euronotos South-southeast
Euros East-southeast
Apeliotes East

Kaikias East-northeast

Figure 3.5 shows another horizontal, plane sundial, found on the island of
Delos in 1894.” The dial is engraved on a slab of white marble streaked with
gray. The slab measures 37 cm X 50 cm and is about 6 cm thick. As is almost
invariably the case, the gnomon has not been preserved. However, traces of
iron remain in the gnomon hole, which is about 1.3 cm in diameter. The
three day curves are engraved with Greek inscriptions (from top to bottom):

FIGURE 3.3. Principle of the conical dial.

TPOITIAI ©EPINAI Summer solstice
ICHMEPIA Equinox
TPOIIAI XEIMEPINAI Winter solstice

An unusual feature, found on only a few other dials, is the triangular wedge
formed by two straight lines that radiate from the noon mark on the day
curve for the winter solstice. These two lines may be translated

where the time of every day remains (right)
where the time of every day has passed (left)

These lines call attention to the variation in the length of the day. The
amount of time the shadow spends outside the triangular wedge is the same
for every day. In the case of the equinox, approximately 3 seasonal hours are
cut out by the triangular wedge (r 1/2 hours on each side of the noon line).
Thus, the twelve seasonal hours of the winter solstitial day are equal to 9
equinoctial hours. In the case of the summer solstice, about 4 2/3 seasonal
FIGURE 3.4. A horizontal, plane sundial found  hours are cut out by the wedge. Thus, the twelve seasonal hours at the winter
near Rome. From Diels (1924). solstice are equal to only 7 1/3 seasonal hours of the summer solstitial day. As
already mentioned, all surviving Greek and Roman dials are marked in seasonal
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hours. There is not a single example of a dial that indicated equinoctial hours
throughout the year. Interestingly, on the very few dials that call attention to
the varying length of the day, such as this dial from Delos, the winter hour
is chosen as the standard of comparison.

The triangular wedge on the Delos dial affords an easy way of determining
the clime, or latitude, for which the dial was designed. The wedge indicates
that 12 winter hours = 9 equinoctial hours. That is, at winter solstice, the
period from sunrise to sunset (12 seasonal hours) lasts 9 equinoctial hours.
This implies that at summer solstice the day would last 15 equinoctial hours.
The dial seems, then, to have been designed for the clime of 15 hours. This
corresponds to a latitude of about 41° (as can be seen in table 2.2 or 2.4). In
section 3.4 we examine another method of determining the latitude for which
the dial was designed, using the lengths of the noon shadows.

The Tower of the Winds

The most remarkable feat of dial making preserved from the ancient period
is the Tower of the Winds in the Agora (marketplace) of Athens. This eight-
sided marble building was constructed by a Macedonian astronomer, Androni-
kos of Kyrrhos, around 5o B.c. Figure 3.6 shows a view of the octagonal tower,
sketched by James Stuart and Nicholas Revett, two British historians of

Choge L1110

FIGURE 3.5. A horizontal, plane sundial found
on Delos. From Diels (1924).

FIGURE 3.6. The Tower of the Winds in
Athens. From Stuart and Revett (1762). Photo
courtesy of Yale University Library.



132

THE HISTORY & PRACTICE OF ANCIENT ASTRONOMY

architecture who published a series of engravings of Greek and Roman antiqui-
ties in 1762.° Each face of the tower bears a relief sculpture of a wind god.
In figure 3.6, we see, from left to right, Apeliotes (the east wind), Kaikias
(northeast), and Boreas (north). Below each relief is a sundial. The eight
sundials, which face in eight different directions, had, of course, to be individu-
ally designed.

Vitruvius mentions the Tower of the Winds in his Ten Books on Architecture
(I, 6). According to Vitruvius, on the top of the tower there was a bronze
weather vane in the shape of a Triton (a son of Poseidon). The Triton turned
to face the wind. A wand in the Triton’s hand pointed to the name of the
wind that was blowing. This weather vane had disappeared by the eighteenth
century, but Stuart and Revett added it to their engraving (fig. 3.6), following
Vitruvius’s description.

The stone floor of the interior was carved with channels that received no
explanation until an archaeological investigation of the 1960s suggested they
were channels for conducting water to run a water clock.” The water clock
displayed inside the Tower of the Winds was almost certainly of the type
known as an anaphoric clock. A wheel, representing the sky and adorned with
the figures of the constellations, turned around once each day. As the wheel
turned, the constellations passed by a metal wire representing the horizon.
Thus, the anaphoric clock would show at a glance which constellations were
rising and setting—even during the daytime. The anaphoric clock is closely
connected with the astrolabe in both its underlying theory and its historical
origins and is discussed in section 3.7.

3.2 VITRUVIUS ON SUNDIALS

Our principal source on Greek and Roman sundials is Vitruvius, a Latin
writer on architecture who lived in the age of Augustus. We have already seen
(sec. 1.4) his use of the gnomon for laying out city streets. Vitruvius believed
thar the architect should be equipped with knowledge from many branches
of study, including geometry, history, philosophy, music, medicine, and as-
tronomy, as well as the more specialized arts of building construction. For all
these sciences bear on architecture in some way. Accordingly, Vitruvius’'s Ten
Books on Architecture ranges over many fields of ancient science and technology.
The greatest digression from purely architectural matters is found in Vitruvius’s
ninth book, which consists of an elementary survey of astronomy.

Beginning of Book Nine

Book IX begins with an introduction in which Vitruvius laments the fact that
authors are not accorded the same honors and riches as athletes. After some
grumbling, which differs very little from the grumbling still heard today when
the salaries of professional athletes are discussed, Vitruvius gives examples of
several authors who have benefitted mankind with their discoveries: Plato
(the doubling of the square), Pythagoras (the theorem on right triangles),
Archimedes (the famous “Eureka!” story), and Archytas and Eratosthenes (the
doubling of the cube). The discoveries of these men are everlasting. Burt the
fame of athletes declines rapidly with their bodily powers.

Now Vitruvius takes up the subject of book IX: astronomy and time
reckoning. The first six chapters are devoted to the zodiac, the motions of
the planets, the phases of the moon, the constellations, and the prediction of
the weather from the stars. Throughout, the scientific level is very low. Vitruv-
ius had but a weak grasp of astronomy and was writing for an audience he
deemed to be interested in only a superficial introduction.



SOME APPLICATIONS OF SPHERICS

The Analemma

In chapter 7 Vitruvius takes up the subject of sundials. Most of this short
chapter is devoted to a description of the analemma, which is a two-dimensional
projective drawing of the celestial sphere (see fig. 3.7). An analemma plays the
same role in the construction of sundials as a lemma plays in the construction of
a mathematical proof. It is a preliminary construction that permits one to
reach the desired goal. The analemma described by Vitruvius was not original
with him, but its inventor is unknown. A number of mathematicians devoted
themselves to the theory of sundials, and many must have used analemmas
of one sort or another. However, the only other ancient writer on this topic
whose work has come down to us is Prolemy, who was later than Vitruvius.
The analemma treated by Prolemy in his book On the Analemma’ is not the
same as Vitruvius’s. Unfortunately, neither Ptolemy nor Vitruvius can teach
us exactly how the ancients used their analemmas in the construction of
sundials. Vitruvius, as we shall see, contents himself with explaining the
construction of the analemma itself and forswears giving any example of its
uses lest he should prove tiresome by writing too much. Ptolemy probably
did provide examples, but this part of his treatise has been lost. Vitruvius’s
chapter 7 is here presented in its entirety:

EXTRACT FROM VITRUVIUS
Ten Books on Architecture IX, 7

1. In distinction from the subjects first mentioned, we must ourselves
explain the principles which govern the shortening and lengthening of the
day. When the Sun is at the equinoxes, that is, passing through Aries or
Libra, he makes the gnomon cast a shadow equal to eight ninths of its own
length, in the latitude of Rome. In Athens, the shadow is equal to three
fourths of the length of the gnomon; at Rhodes to five sevenths; at Tarentum,
to nine elevenths; at Alexandria, to three fifths; and so at other places it is
found that the shadows of equinoctial gnomons are naturally different from
one another.

2. Hence, wherever a sundial is to be constructed, we must take the
equinoctial shadow of the place. If it is found to be, as in Rome, equal to
eight ninths of the gnomon, let a line be drawn on a plane surface, and
in the middle thereof erect a perpendicular, plumb to the line, which
perpendicular is called the gnomon. Then, from the line in the plane, let
the line of the gnomon be divided off by the compasses into nine parts,
and take the point designating the ninth part as a center, to be marked by
the letter A. Then, opening the compasses from that center to the line in
the place at the point B, describe a circle. This circle is called the meridian.
(See fig. 3.7.]

3. Then, of the nine parts between the plane and the center on the
gnomon, take eight, and mark them off on the line in the plane to the
point C. This will be the equinoctial shadow of the gnomon. From that
point, marked by C, let a line be drawn through the center at the point
A, and this will represent a ray of the Sun at the equinox. Then, extending
the compasses from the center to the line of the plane, mark off the
equidistant points £ on the left and 7 on the right, on the two sides of the
circumference, and let a line be drawn through the center, dividing the
circle into two equal semicircles. This line is called by mathematicians the
horizon.

4. Then, take a fifteenth part of the entire circumference, and, placing
the center of the compasses on the circumference at the point where the
equinoctial ray cuts it at the letter , mark off the points G and / on the
right and left. Then lines must be drawn from these [and the center] to
the line of the plane at the points 7 and R, and thus, one will represent
the ray of the Sun in winter, and the other the ray in summer. Opposite
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FIGURE 3.7. The analemma of Vitruvius.
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E will be the point /, where the line drawn through the center at the point
A cuts the circumference; opposite G and H will be the points L and 4
and opposite C, F, and A will be the point N.

5. The, diameters are to be drawn from G to L and from H to M. The
upper will denote the summer and the lower the winter portion. These
diameters are to be divided equally in the middle at the points P and O,
and those centers marked; then, through these marks and the center 4,
draw a line extending to the two sides of the circumference at the points
Z and Q. This will be a line perpendicular to the equinoctial ray, and it
is called in mathematical figures the axis. From these same centers open
the compasses to the ends of the diameters, and describe semicircles, one
of which will be for summer and the other for winter.

6. Then, at the points where the parallel lines cut the line called the
horizon, the letter S is to be seen on the right, the letter Y on the left; and
from the letter S draw a line parallel to the axis as far as the semi-circle
on the right, which it cuts at V; and from Y to the semi-circle on the left
draw in the same way a parallel which cuts it at X. These parallels are
called . . . <Further, draw a parallel line from the point /4, where the summer
ray cuts the circumference, to the point G, where the winter ray cuts the
circumference. This parallel is called> . . . loxotomus. Then, place the point
of the compasses at the intersection of this line and the equinoctial ray—call
this point D—and open them to the point where the summer ray cuts the
circumference at the letter /. Around the equinoctial center, with a radius
extending to the summer ray, describe the circumference of the circle of
the months, which is called menaeus. Thus we shall have the figure of the
analemma,

7. This having been drawn and completed, the scheme of hours is next
to be drawn on the baseplates from the analemma, according to the winter
lines, or those of summer, or the equinoxes, or the months, and thus many
different kinds of dials may be laid down and drawn by this ingenious
method. But the result of all these shapes and designs is in one respect the
same: namely, the days of the equinoxes and of the winter and summer
solstices are always divided into twelve equal parts, Omitting details, there-
fore—not for fear of the trouble, but lest I should prove tiresome by writing
too much—I will state by whom the different classes and designs of dials
have been invented. For I cannot invent new kinds of myself at this late
day, nor do I think that I ought to display the inventions of others as my
own. Hence, I will mention those that have come down to us, and by
whom they were invented.”

The analemma is most easily understood as a side view of an armillary
sphere (compare fig. 3.7 with fig. 2.9). In figure 3.7, circle NIFE represents
the celestial meridian. The axis of the universe is line ZQ. The horizon plane
is represented by line £7, and the Earth is at A. The two tropics and the
equator are seen in an edge-on view as lines HM (tropic of Capricorn), FN
(equator), and GL (tropic of Cancer). These three circles naturally stand
perpendicular to the plane of the figure, with a semicircle above the plane
and a semicircle below. In figure 3.7, a semicircle of each tropic has been
folded into the plane of the diagram. These folded tropics are represented by
the dashed semicircles MZH and LVG.

On the day of the summer solstice, the Sun’s diurnal path through the
sky coincides with the tropic of Cancer. Point L will be its position at noon,
and G its position ar midnight. Now, if the dashed semicircle LVG is imagined
folded up (the fold being along the diameter LG) so that the tropic is in its
correct position, then it is easy to see that the dashed line SV will lie in the
plane of the horizon. Thus, V represents the position of the Sun at sunrise
or sunset, on the day of the summer solstice. If we let the semicircle GVL
represent the period from midnight to noon, then arc GV is the portion of
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the night from midnight till sunrise, and arc VL is the portion of the day
from sunrise till noon. The same semicircle LVG can also represent the second
half of the day, that is, the period from noon to midnight: in this case we
interpret V as sunset. Similarly, on the folded-down tropic of Capricorn
(semicircle MXH), point X represents either sunrise or sunset on the day of
the winter solstice.

Conclusion of Book Nine

As is apparent from the extract, Vitruvius is content to describe the construc-
tion of the analemma and does not bother to explain its use in the design of
sundials. (We shall see in sec. 3.3 the likely technique in the case of a horizontal
plane sundial.) In the eighth and final chapter of book IX, Vitruvius lists a
number of different kinds of dials, together with the names of their supposed
inventors. The cut hemispherical dial, illustrated in figure 3.2, is atwribured
to Berosus the Chaldaean; the conical dial, to Dionysodorus; the plane disk,
to Aristarchus of Samos. A number of other types of dials are named, but
because Vitruvius gives no details, it is difficult to identify them all today
with any cerrainty. Vitruvius ends his discussion of sundials with the remark
thar anyone who wishes to learn how to mark a dial can find out how to do
so from the works of those who have written on this subject, provided that
he understands the figure of the analemma. Evidently, there were other treatises
on dialing that have not come down to us. Chapter 8 ends with a discussion
of water clocks. Despite some gaps in the discussion, Vitruvius is fairly clear
and provides valuable detail on this branch of ancient technology.

3.3 EXERCISE: MAKING A SUNDIAL

Vitruvius describes the construction of the analemma but does not demonstrate
its application to the design of sundials. It is therefore impossible to say exactly
how the ancient dial makers used the analemma to produce the face of a
sundial, but it is possible to make a good guess.

Gustav Bilfinger® has shown how the analemma can be used to construct
horizontal and spherical sundials. Other solutions are possible, but Bilfinger’s
has the merit that it uses all the parts of the analemma and requires no new
ones. Whether this is the actual method followed by the ancients cannot be
proved, but, even if it is not, it must be close in spirit.

Step 1: Construction of the Analemma

The first step in making a sundial is the construction of the analemma
according to the directions given in the extract from Vitruvius’s Ten Books
on Architecture. However, it will be convenient to modify Vitruvius’s directions
slightly.

Obrain a large sheet of paper, 20” X 30” or larger. Lay the paper on your
working table with the shorter sides running left to right, as in figure 3.8.
Draw the meridian circle, with at least a 4” radius, in the upper left corner
of the paper, but be careful to leave several inches of space between the circle
and the edges of the paper. Through the center A of the cirde, draw the
horizontal line E7 that represents the horizon.

Draw the axis ZQ of the universe through A so that it makes an angle
with the horizon equal to the latitude of the place for which you wish to
construct the sundial. The axis intersects the meridian at point Q, above the
horizon, and at point Z, below. Angle QA7 is equal to the latitude.

Choose an appropriate length for the gnomon, 1”7 or 1 1/4”, and draw the
gnomon AB perpendicular to the horizon. Draw through the base B of the

FIGURE 3.8.
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gnomon a line parallel to the horizon and let it extend all the way across the
paper. This baseline represents the ground, on which the shadows of the
gnhomon are to be projected. (Here we depart slightly from Vitruvius’s direc-
tions. It is important to make the meridian circle large so that the pencil work
can be accurate. But if we made the gnomon 4” high—equal to the radius of
the meridian—the sundial face would turn out six or seven feet wide. It is the
height of the gnomon that determines the size of the finished sundial. The
tip A of the gnomon must lie at the center of the celestial sphere, but the
base B may be pur at any convenient place. In all thar follows, our diagram
will be exactly the same as Vitruvius’s, except that the baseline is shifted
upward.)

Draw the equator FN through point A4, perpendicular to the axis ZQ. The
equator cuts the meridian at NV, above the horizon, and at F, below. It also
cuts the baseline at C. When the Sun is at /V, at noon on the equinox, it will
FIGURE 3.9. Division of the diurnal circle into produce the shadow BC. (Note that Vitruvius begins his construction by
hours (step 2). specifying the ratio of the equinoctial noon shadow BC to the gnomon’s
height AB. But since the modern reader is more likely to know the latitude
of the place where he or she lives than the length of the equinoctial shadow
there, we begin by constructing the latitude angle QAI The correct length
of the equinoctial noon shadow then follows automarically.)

We have so far finished the parts of the construction that Vitruvius describes

in paragraphs 2 and 3. We have also drawn the axis, which is described in
paragraph 5. Complete the figure of the analemma according to Vitruvius’s
prescription in paragraphs 4, 5, and 6. Note that angle LAN = NAM = 24°,
that is, the obliquity of the ecliptic. Also, we will have no need for line HG
(loxotomus) or the small circle (menaeus) having HG as diameter, so you
may leave these out.

Step 2: Division of the Diurnal Circles into Hours

Now that the analemma has been drawn, we shall prepare it for use in the
construction of a horizontal sundial. The figures accompanying our directions
are drawn for the latitude of Rome. To make the shadows longer, for the
sake of clarity in the little diagrams, we have drawn the baseline tangent to
the meridian circle as, indeed, Vitruvius prescribes. However, as explained
above, you should draw your own baseline higher.

Summer Solstice On the day of the summer solstice, the Sun’s diurnal motion
will carry it around a circle coinciding with the tropic of Cancer. In figure
3.9 this circular path is seen edge on as line ZG. The actual diurnal circle
would stand up perpendicular to the plane of the diagram with LG as its
diameter. Semicircle LVG represents this diurnal circle folded down into the
plane of the diagram—or really one-half of the diurnal circle. Arc LV represents
the part of this semidiurnal arc that is above the horizon, and VG, the part
below.

According to modern practice, we should place the center of a protractor
at P and divide arc LVG into 12 equal segments of 15° each, representing the
twelve equal hours that we count from midnight (point G) to noon (Z).
However, the ancient Greeks divided the petriod between sunrise and sunset
into twelve seasonal hours, which were therefore longer in summer and shorter
in winter. Equivalently, the time between suntise (V) and noon (L) is divided
inrto six parts. Accordingly, place the center of a protractor at P, find by direct
measurement that angle LZPV is 115°, and divide arc LV into intervals of one-
sixth this size, or about 19° each. (These particular numbers apply only to
the latitude of Rome, of course.) The resulting hour marks are labeled 7, 7/,
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i, . .. VI (Be careful not to make the mistake of dividing arc LV by placing
the center of the protractor at §. The center of the protractor must be placed
at the center P of the Sun’s diurnal circle.)

Project each of the points 7, 77, . . . Vonto line LS by means of lines drawn
parallel to the axis AP. The resulting points I, II’, ... V' represent the
position of the Sun at each of the hours, as seen in a side view of the celestial
sphere. Note that point VI’ {(noon) would be the same as VI.

Winter Solstice The diurnal path of the Sun at winter solstice coincides with
the tropic of Capricorn. Seen from the side, this circle appears in figure 3.9
as line MH, When half the circle is folded down into the plane of the diagram,
itappears as semicircle MXH. Arc MX represents the portion of the semidiurnal
path that is above the horizon. Therefore, place the center of a protractor at
O and divide angle MOX into six equal parts, marking the divisions along
arc MX. (Be careful not to place the center of the protracror at ¥.) The
resulting points are then projected onto line MY by means of lines parallel
to the axis.

Step 3: Construction of the Shadow Tracks

Refer to figure 3.10. Mark point W below the analemma exactly on the line
determined by points A and B. It does not matter how far W lies below the
analemma, but place W roughly in the middle of the available empty space.
W will be the gnomon’s position on the functioning sundial.

In constructing the shadow tracks, we must locate the tip of the shadow
at each hour of the day. We locate the tip of the shadow by finding (1) the
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FIGURE 3.10 Construction of the shadow track, FIGURE 3.11 Construction of the shadow track, winter

summer solstice (step 3). solstice (step 3).
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distance by which it lies north or south of the gnomon’s base, and (2) the
actual length of the shadow.

Summer Solstice To find the noon shadow, project a line from point V7
(which represents the Sun’s place on the meridian at noon) through the tip
A of the gnomon (fig. 3.10). The point 6" where this line crosses the baseline
determines the length of the noon shadow. Therefore, draw a line down from
6" parallel to line ABW. Open the compasses to make a radius equal to B6’,
then place the point at Wand draw an arc, which will touch the new line at
the point we have marked 6. The line segment W6 (whose length is equal to
B6") is the actual noon shadow on the day of the summer solstice.

To find the tip of the shadow at any other hour of the day (take the second
hour as a case), proceed as follows. From point II’, project a line through 4
to the baseline, which it cuts at 2. Distance B2’ represents the distance by
which the shadow tip lies south of the gnomon’s base (B or W). Therefore,
draw a line from 2” straight down the page parallel to the line ABW. The tip
of the shadow must lie somewhere along this line at the second hour of the day.
To find just where, we must make another projection, which will determine the
actual length of the shadow.

The projection from /I’ gave us information only about the north-south
length of the shadow, because point II” represents the position of the Sun as
viewed from the east side of the celestial sphere. All east-west informarion is
therefore lost in this projection. That is, we cannot tell (from point /I’ alone)
whether the Sun lies in the plane of the paper, or an inch below it, or two
inches above. Therefore, we must somehow move the Sun into the plane of
the diagram without changing the length of its shadow. To do this, project
from II” a line parallel to the horizon that will intersect the meridian circle
at a point we shall call 77”. From II”, project a line through A to the baseline
that will be cut at 2”. Distance B2” then is the actual length of the shadow
at the second hour. (It is the fact that we moved the Sun from I’ wo II”
keeping it always the same distance above the horizon that guarantees we
have not changed the actual length of the shadow.) Then set the compasses
to give a radius equal ro B2”, place the point at W, and draw a circle. The
place, marked 2, where this circle intersects the line drawn previously through
2" then gives the location of the shadow tip at the second hour. There is of
course another place, east of the gnomon, where the line and circle intersect.
This point, marked 10, is the location of the shadow tip at the tenth hour.
(As 2 gives the position of the shadow tip four hours before noon, so 10 gives
the position four hours after noon.)

In the same way, find the location of the shadow tip at each of the other
hours of the day. The projections for the fourth and eighth hours are also
illustrated in the diagram. The odd hours have been left out, to avoid cluttering
the figure, but you should include them when you make your own sundial.

Winter Solstice The construction of the shadow track for the day of winter
solstice goes the same way. Figure 3.1x shows the projections for the shadows
at the sixth hour (noon) and at the second hour. For clarity, we have illustrated
the construction for the winter shadow track in a separate diagram, but when
you set about making a real sundial you will, of course, draw the summer
and winter tracks on the same sheet of paper, using the same gnomon.

To find the noon shadow, project a line from V7 through A to the baseline,
which it cuts at 6". Then B6” represents the length of the noon shadow. This
distance is reproduced on the face of the sundial as W5, exactly as before.

To find the tip of the shadow at the second seasonal hour, proceed as
follows. Project a line from I’ through A to the baseline, which it cuts at
2’. From 2’ draw a line parallel to line ABW. The tip of the shadow must
lie somewhere along this line. Next project a line from /I’ to the left, parallel
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to the horizon, and cut the meridian circle ac a point called 77”. From II”
project a line through A to the baseline, which it cuts at 2”. Then B2” is the
actual length of the shadow at the second hour. Set the compasses to make
a radius equal to B2”, place the point at W and draw a circle. The point,
marked 2, where this circle intersects the line through 2” is the location of
the tip of the shadow at the second hour. A second intersection, labeled 10,
marks the location of the shadow’s tip at the tenth hour. All this is exactly
like the procedure for the summer shadow. It may look a little different,
however, because of the use of the different diurnal circle (MXH instead of

LVG).

Equinox The equinoctial shadow track is a straight line (sce fig. 3.12). From
N (the Sun’s position at noon on the day of the equinox), we have already
projected the ray NA, which cuts the baseline at C. And BC is the length of
the noon equinoctial shadow. Draw a line down from C, parallel to the line
ABW. This line is the desired track of the equinoctial shadow.

Step 4: Drawing the Hour Lines

Refer to figure 3.12. Simply connect the line 2—2 between the points that mark
the shadow tip at the second hour of the summer solstice and the second
hour of the winter solstice. Proceed similatly for each of the other ten hours
(only the even hours are shown in the simplified diagram), producing the
characteristic bat-wing shape of the ancient horizontal sundial.” Your sundial
is finished and ready for use.

Step 5: Use of the Sundial

Place your sundial on a level, sunny surface with the noon shadows pointing
north. Set a gnomon at W perpendicular to the surface. The length of the
gnomon must be equal to AB, and your dial will be accurate only at the
laticude for which you designed it. If the shadow tip happens to fall on the
line for the fourth hour, the time is four seasonal hours after sunrise, that is,
two-thirds of the way from sunrise to noon. If the shadow tip falls between
two shadow lines, the time can be interpolated.

Postscript on the Use of the Menaeus

The directions given above explain how to determine the lengths and directions
of the shadows only for the summer solstice, the equinoxes, and the winter
solstice. Since a typical Greek sundial requires shadow data only for these
three days, we had no need of the menaeus circle. The menaeus is used to
find the lengths and directions of the shadows at other times of the year. You
will not need to use the menaeus for the dial described in section 3.3. But for
the sake of completeness, we will conclude with this postscript on the use of
the menaeus circle.

Refer to figure 3.13, which shows the analemma constructed in the usual
fashion, except that the day circles for the summer and winter solstices have
been omitted. Divide the menaeus circle into twelve equal segments, beginning
at G. These twelve segments represent the twelve signs of the zodiac, as shown
in figure 3.13. The beginning of the sign of the Crab coincides with G; the
beginning of the sign of the Goat-Horn coincides with H. (The direction in
which the signs are labeled around the menaeus is immaterial. In fig. 3.13,
they run counterclockwise.)

Suppose we wish to use the analemma for the day of the Sun’s entry into
the sign of the Bull (April 20). Through point U on the menaeus (representing
the beginning of the Bull), draw a line parallel to the equator. This line cuts
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the meridian at / and X and cuts the axis at W. Line segment /K is a side
view of the Sun’s diurnal path on the day in question. To construct a semicircle
of this path, folded down into the plane of the meridian, place the point of
a compass at W and draw semicircle KX/, as shown in figure 3.13. This
semicircle may be divided in the usual way, and the usual projections may
be made to determine the shadow lengths.

Gnomon

€ South N R ,North —>
6 5 E Meridian

3.4 EXERCISE: SOME SLEUTHING WITH SUNDIALS
FIGURE 3.14.
In this exercise, we take up a problem first raised in section 3.1—determining
the latitude for which an ancient horizontal plane dial was designed. The
problem is complicated by the absence of the original gnomons. Thus, two
related questions must be answered simultaneously: what was the height of
the missing gnomon, and for what latitude was the dial designed? We shall
% A solve this problem for the two dials found at Rome and Delos, illustrated in
figures 3.4 and 3.5.

240

The Rome Dial

e?o

We begin with the dial from Rome, because the problem is simpler for this
dial. Construct a diagram like figure 3.14, which represents the meridian and
the gnomon seen in a side view. We assume that the gnomon was set vertically
into the gnomon hole G. The height of the gnomon is not yet determined,
so the gnomon is represented as a line of indeterminate length. Along the
meridian, points S, £, and W mark the tip of the gnomon’s noon shadow at
summer solstice, at equinox, and at winter solstice, respectively. The distances
FIGURE 3.I5. should be carefully drawn to actual size. For this purpose, use the following
measurements taken from the original dial:"

GS=1.5cm
SE=2.3cm
EW=35.6 cm

On a separate sheet of transparent plastic or tracing paper, draw figure 3.15,
which has three rays intersecting at a common point A. The angle between
the central ray and each of the others should be equal to the obliquity of the
ecliptic, that is, 24°. These three rays will represent rays of the noon Sun at
summer solstice, equinox, and winter solstice. Point A will represent the tip

LGN W of the gnomon.

Place the transparency over the diagram of the gnomon and the meridian.

FIGURE 3.16. Then slide the transparency up and down on the diagram, always keeping
point 4 on the gnomon line, until you can make the three rays pass through
points S, £, and W, as shown in figure 3.16. When this is achieved, the problem
will be solved. (Note that fig. 3.16 has not been drawn to scale, as your own
must be.)

Once the transparency is properly oriented on the diagram, simply measure
distance AG. This distance is the height of the gnomon for which the dial
must have been designed. Place the center of a protractor at point £ and
measure angle GEA. This angle represents the angle between the celestial
equator (line AF) and the horizon (line GE). Thus, angle GEA is the co-
latitude for which the dial was designed. The latitude is then 90° — GEA.

Use the method just outlined to determine the latitude for which the Rome
dial was designed and the height of its missing gnomon.
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The Delos Dial

The problem for the Delos dial is a little more complicated. As we shall see,
the gnomon of this dial was not perpendicular to the surface of the dial, but
was bent toward the north. This was by no means an unusual situation. In
all ancient sundials, only the shadow of the very tip of the gnomon played
any role. As long as this tip was placed correctly over the proper spot of the
dial, it made no difference where the base of the gnomon happened to be
inserted. Many ancient dials make use of this freedom of placement.

The analysis should be based on the following measurements' :

GS5=3.0cm
SE=2.3 cm
EW=49cm

In applying the method outlined above, do not assume that the tip of the
gnomon must be directly above the gnomon hole G. Rather, simply adjust
the position of the transparency until the three rays pass through points S,
E, W, as shown in figure 3.17. The position A of the point of intersection of
the rays will then indicate the proper position of the gnomon’s tip. The actual
gnomon then probably is represented by line GA (fig. 3.18). From A, drop a
perpendicular to the meridian line. This perpendicular will cut the meridian
at a point we shall call F. The proper functioning of the dial would remain
undisturbed if the actual gnomon GA were replaced by a vertical gnomon
FA. Use a ruler to measure the length of the actual gnomon and the length
of the equivalent vertical gnomon. To determine the co-latitude at which the
Delos dial would function correctly, place the center of a protractor at £ and
measure angle FEA.

3.5 THE ASTROLABE

The astrolabe is a working model of the heavens, a kind of analog computer.
In the astrolabe, the celestial sphere has been projected onto a plane surface.
Thus, the astrolabe can be considered a two-dimensional version of a celestial
globe or armillary sphere. The basic principle of the astrolabe was a discovery
of the ancient Greeks, but the oldest surviving astrolabes are medieval.
Throughout the Middle Ages, first in Islam and later in Christian Europe,
the astrolabe was the most common astronomical instrument. When precise
results were called for, the astronomer had recourse to specialized instruments
and to tedious trigonometric computation. The beauty of the astrolabe was
that approximate solutions (good to the nearest degree or s0) to astronomical
problems could be found by a mere glance at the instrument.

Parts of the Astrolabe

In the appendix are patterns for making an astrolabe. Photocopy fig. A.1-A3
onto card stock, or photocopy them onto paper and glue them to cardstock
using a glue stick or other glue that will not cause the paper to curl. Photocopy
figure A.4 onto transparent plastic. Most copy centers can do this for you.
You may, if you wish, enlarge the patterns when you photocopy. All the parts
must be enlarged by the same amount. Cut out the parts of the astrolabe.
Punch or cut out the eight 1/4”-diameter holes (solid black on the patterns).
Glue the large disks of figures A.1 and A.2 back to back so that the holes and
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FIGURE 3.19. The rete of the astrolabe.

tabs line up and place under a stack of books until dry. You will need a
1/4”-diameter bolt and nut to hold your astrolabe together. Lightweight nylon
machine screws (obtainable at most hardware stores) are a good choice.

Rete  Examine the rete (fig. 3.19), which is made of transparent plastic. (Rete
is a two-syllable word; it thymes with “treaty.”) The rete represents the celestial
sphere and is marked with a number of stars. A few constellations are also
traced in outline on the rete: the Big Dipper, containing the stars Merak and
Dubhe; the W-shaped constellation of Cassiopeia, containing the star Caph;
the Great Square of Pegasus, containing Alpheratz; Orion, containing Rigel,
Betelgeuse, and Bellatrix; and the Hyades (part of Taurus), containing Alde-
baran.

The north celestial pole is the hole in the center of the rete. The rete is
designed to turn around a screw stuck through this hole. This turning of the
rete represents the daily rotation of the celestial sphere.

On the rete, the ecliptic is the off-centered circle divided into signs of the
zodiac. Note that the ecliptic ring has a certain thickness. The actual ecliptic
is the fiducial edge of the ring (the edge divided into degrees).

There are two scales around the perimeter of the rete. The outermost scale,
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divided into hours, is a scale of right ascension. The other scale, marked with
days of the year, is for making conversions between Sun time and clock time.

Latitude Plate Most parts of an astrolabe (including the rete) can be used
at any latitude on Earth. But a lasitude plaze (fig. 3.20) must be designed for
a specific latitude. Your astrolabe comes with two plates—one for the latitude
of Seattle (latitude 47 2/3° N) and one for the latitude of Los Angeles (34°
N). The plate for Seattle is built into the mater of the astrolabe. The plate
for Los Angeles is separate.

On each plate, the heavy circle centered on the pole is the celestial equator.
The tropic of Capricorn is the southern, or outer, boundary of the plate. The
tropic of Cancer is the smallest of the three concentric circles.

The horizon is the heavy curve that runs off the edge of the latitude plate.
Three cardinal points are marked around the horizon: east (E), north (N),
and west (W). The south point does not fit on the plate, but it lies in the
direction indicated by the arrow near the letter S. The fact that the plate of
figure 3.20 is designed for the latitude of Mexico City shows up in a simple
way: the center of the hole (the north celestial pole) is about 20° above the
north point N of the horizon. Thus, the altitude of the pole on this plate is
about 20°.

The zenith (straight overhead) is marked by a heavy dot. The meridian is
the straight line running down the center of the plate. It passes through the
north point N of the horizon and through the zenith.

Glue two small scraps of card to the mater, on either side of the meridian
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LUG ON PLATE FITS INTO
NOTCH IN L!MB OF MATER

FIGURE 3.2I. The assembled astrolabe.

line near the letter S (for “south”), thus forming a notch, into which the lug
of your extra plate may fit (as in fig. 3.25). This will keep the Los Angeles
plate from slipping around when you want to use it. When you are solving
problems for Seattle, just lay the Los Angeles plate aside.

Place the rete face up on top of the plate and put the rule on top of
everything (see fig. 3.21). Fasten the assembly together with the screw. Parts
of the rete within the horizon circle are above the observer’s horizon. Parts
of the rete outside the horizon circle are below the observer’s horizon. In
figure 3.21, Orion (with its stars Betelgeuse and Rigel) is above the horizon
and therefore visible. But Spica and Alphard are below the horizon.

The direction of a star in the sky may be specified by two angular coordi-
nates, the altitude and the azimuth (see sec. 2.9). Imagine going outside and
drawing circles on the sky, all equally spaced and parallel to the horizon, as
in figure 3.22. These circles of constant altitude are called a/mucantars. On
the latitude plate, the almucantars show up as a family of nonintersecting
circles (as in fig. 3.24. The most important almucantar is the horizon itself.
As we go up from the horizon, the almucantars become smaller until we reach
the zenith point. Each almucantar is labeled with its altitude. Note that three
of the almucantars are below the horizon. These three are indicated by dashed
lines and are labeled with negative altitudes. :

Imagine going outside again and drawing a second family of circles on the
sky, as in figure 3.23. Begin by facing due east and drawing a circle that starts

ZENITH

HORIZON

FIGURE 3.22. Almucantars.
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at the east point, goes straight up through the zenith, then continues straight
down to the west point. Such a circle is an example of an azimuth circle.
Every azimuth circle is perpendicular to the horizon, and they all intersect at
the zenith. On the latitude plate, the azimuths show up as a family of circles
that meet the almucantars at right angles (fig. 3.24). The most important
azimuth is the meridian. Each azimuth is labeled with a number indicating
its angular distance away from due east or due west. In figure 3.24, the position
of point X is azimuth 40° south of west and altitude 20°.

The almucantars below the horizon are useful in twilight problems. Today,
three kinds of twilight are distinguished. Civil swilight begins or ends when
the Sun is 6° below the horizon. At this time only the brightest stars are
visible. Nautical twilight begins or ends when the Sun is 12° below the horizon.
Most stars of middling brightness are then visible. Astronomical rwilight begins
or ends when the Sun is 18° below the horizon and the sky becomes perfectly
dark.

On the latitude plate (fig. 3.24), a system of eleven curves is used for
problems involving seasonal hours.

Rule The rule (fig. 3.21) is marked with declinations, from —30° to +70°.
Note that the zero of declination on the rule lines up with the celestial equator
on the plate. Turn the rule untdl it lies beside Spica. You can read off the
declination of Spica as —11°. That is, Spica is located 11° south of the celestial
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FIGURE 3.26. The back of the astrolabe.

HOLE FOR SUSPENSION RING

The edge of the rule, extending from Spica to the Roman numerals on
the outer edge of the plastic rete, also indicates that the right ascension of
Spica is 13 1/2 hours. Thus, the rule, in conjunction with the right ascension
scale, can be used to read off the celestial equatorial coordinates of stars.

Mater The mater (fig. 3.25) serves as a base on which the plate and rete are
stacked. The notch in the limb of the mater receives the lugs on the plates
and keeps the plates properly oriented. The limb of the mater is furnished
with two scales. The inner scale of hours is used for telling time. The XII at
the top represents noon and the XII at the bottom represents midnight. The
hours on the left half of the limb are morning (a.M.) hours, and those on the
right are afternoon hours. The outer scale of the mater is divided into degrees
from 0° to 360°. It may be used for converting times or right ascensions into
degrees. For example, 5 hours of time correspond to 75°.

Features of the Back of the Astrolabe  The back of the astrolabe (fig. 3.26) has
three circular scales. The two innermost are a calendar scale and a zodiac scale.
These are used together to determine the Sun’s celestial longitude for any day
of the year. The fiducial edge of the alidade is placed at the desired date on

the calendar scale. The Sun’s position is read off on the zodiac scale.
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The outermost scale (the altitude scale) consists of four quadrants, each
graduated from 0° to 90°. This scale is used with the alidade for observing
the altitude of a star or of the Sun. The alidade can be furnished with two
vanes, each of which is pierced by a sighting hole. BELLATRIX

The shadow box (fig. 3.26) is used to solve problems involving shadows. ON HORIZON
The last feature of the back of the astrolabe is a family of circular arcs used
for telling the seasonal hour by means of the altitude of the Sun.

RULE THROUGH
XXIV-HOUR MARK

Many features of your astrolabe were more or less standard during the
whole history of the astrolabe. But some features (e.g., the scales on the rete
for mean time and for right ascension) are modern conveniences.

Using the Astrolabe

Some of the most important applications of the astrolabe are described here
in the form of worked examples. Unless otherwise noted, each example is
worked for the latitude of Seattle (47 2/3° N). The secret of using the astrolabe
is to visualize the meanings of the various circles. Once you have worked
through a few problems, you should be able to solve new types of problems
without instructions.

FIGURE 3.27.

First Group: Problems Involving Stars

1. Rising position of a star:

Example Problem: Where on the horizon does Bellatrix rise?

Solution: Turn the plastic rete until Bellatrix appears on the eastern side
of the horizon. (The horizon is the heavy circle on the plate marked with the
letters E, N, and W; see fig. 3.27). Bellatrix crosses the horizon about 13°

north of east.
RIGEL ON MERIDIAN

2. Meridian altitude of a star:
Problem: How high above the horizon is Rigel when it crosses the meridian?
Solution: Turn the rete untl Rigel comes to the meridian above the horizon.
(The meridian is the straight line running through the middle of the plate;
see fig. 3.28). Rigel is 33° above the horizon.

3. The time a star spends above the horizon:
Problem: How long does Bellatrix spend above the horizon each day?

Solution: There are several ways to do this. The solution given here is the

FIGURE 3.28.

simplest. First, orient the rete so that Bellatrix is on the eastern horizon.
Second, position the rule so that it passes through the XXIV-hour mark on
the right ascension scale of the plastic rete (see fig. 3.27). (The XXIV-hour
mark is the same thing as a zero-hour mark.) Be sure to use the hour marks
on the rete and ignore the hour marks on the mater. Third, while holding the
rule in place with your thumb, turn the rete until Bellatrix reaches the western
horizon. You should find that the XIII-hour mark of the rete is about 1/4
hour past the rule. That is, the rete turned through 13 1/4 hours while Bellatrix
went from the eastern to the western horizon. Thus, at Seartle, Bellatrix is
above the horizon for 13 1/4 hours.

Second Group: Problems Involving the Sun

4. Position of the sun on the ecliptic:
Problem: What is the Sun’s position on the ecliptic on February 4?
Solution: Turn to the back of the astrolabe. Orient the alidade so that it
passes through the February 4 mark on the calendar scale, as in figure 3.26.
Then read off the Sun’s position on the zodiac scale. On February 4, the Sun
is at the 15th degree of Aquarius.
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FIGURE 3.29.

5. Rising position of the sun:

Problem: For an observer in Seattle, where on the horizon does the Sun
rise on February 42

Solution: From problem 4, we know that on February 4 the Sun is at the
15th degree of Aquarius. Orient the rete so that AQR 15° is on the eastern
horizon, thus simulating sunrise (see fig. 3.29). AQR 15° crosses the eastern
horizon about 25° south of east. Note that this problem is essentially the same
as problem 1.

6. Noon altitude of the sun:
Problem: What is the noon altitude of the Sun in Seattle on February 4?
Solution: As we know from problem 4, on February 4, the Sun is at the
1sth degree of Aquarius. Turn the rete so that AQR 15° comes to the meridian,
thus simulating local noon. You should find that is about 26° above the
horizon. This is much like problem 2.

7. Length of the day:

Problem: How long is the Sun up at Seattle on February 4?

Solution: On February 4, the Sun is at Aquarius 15° (from problem 4).
Orient the rete so that AQR 15° is on the eastern horizon; this represents
sunrise. Then orient the rule so that it passes through the XXIV-hour mark
on the right ascension scale of the rete (fig. 3.29). While holding the rule
down with your thumb, turn the rete until AQR 15° comes to the western
horizon (sunset). You should now find that the IX-hour mark on the rete is
about 1/2 hour past the edge of the rule. Thus, at Seattle on February 4, the
Sun is above the horizon for 9 1/2 hours. Note that this problem is essentially
the same as problem 3.

8. Time of sunrise or sunset:

Problem: At what time does the Sun rise at Seattle on February 4?

Solution: There is more than one way to solve this problem. One way is
to use the result of problem 7, that the Sun is above the horizon for 9 1/2
hours at Seattle on February 4. Half of this 9 1/2 hours is the length of the
morning and half is the length of the afternoon. Thus, the Sun sets at 4:45
p.M. It rises 4 hours and 45 minutes before noon, at 7:15 A.M.

Alternative (and more elegant) solution: On February 4, the Sun is at the
15th degree of Aquarius. Orient the rete so that AQR 15° is on the eastern
horizon, simulating sunrise. Now orient the rule so that it passes through the
Sun (AQR 15°). The time of day is indicated by the rule’s position on the
scale of hours marked on the limb of the mater: sunrise occurs at 7:15 A.M.

The time of day obtained in this way is Sun time (what astronomers call
local apparent time). There are several reasons why Sun time might differ from
standard (or clock) time. Methods for obtaining clock time from the astrolabe
are described in the fifth group of problems. But even with the simple proce-
dures of Problem 8, the time obtained from the astrolabe will usually differ
from clock time by less than half an hour. Only be sure not to neglect daylight
saving time, when applicable.

9. Time of dawn:

Problem: In Seattle on February 4, at what time does dawn break?

Solution: Dawn breaks when the Sun is about 6° below the horizon. On
February 4, the Sun is at the 15th degree of Aquarius. Place AQR 15° on the
—6° almucantar on the eastern side of the astrolabe. Turn the rule so that it
passes through the Sun (AQR 15°). The edge of the rule then indicates the
time on the scale of hours of the mater. The time is about 6:40 A.M. Note
that this solution is exactly like the alternative solution of problem 8, except
that we use the —6° almucantar instead of the horizon.
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Third Group: The Astrolabe as an Instrument of Observation

To determine the time of day by means of an astrolabe, one must first be
able to make a relevant astronomical observation with satisfactory accuracy.
The astrolabe is best suited to measuring altitude. Make some balsa-wood
vanes and glue them to the alidade, as shown in figure 3.26. The vanes should
have holes or notches in them. The holes should lie directly over the fiducial
edge of the alidade.

10. Measuring the altitude of the sun:

Never sight the Sun directly by looking at it through the holes in the
vanes—you could permanently damage your eyes. Sun observations should
always be made indirectly, by observation of shadows.

Put a paper clip or metal key ring through the hole at the top of the mater
to serve as a suspension ring. Hold the astrolabe by the suspension ring so that
it dangles freely. Turn the astrolabe so that it is edge on toward the Sun (fig.
3.30, left). Adjust the angle of the alidade until the shadow of the upper vane
falls on the lower vane, and the spot of light (coming through the hole in
the upper vane) falls on the hole in the lower vane. Then read the altitude
of the Sun on the altitude scale. In fig. 3.30, the altitude of the Sun is 60°.

1. Altitude of the sun: shadow box method:

Most people are about six feet tall when measured with their own feet. It
follows that each person carries a standard six-foot shadow-casting gnomon
wherever he or she goes. To measure the length of your shadow, note on the
ground the location of a twig or stone that marks the end of your shadow.
Then pace off the length of the shadow by placing one foot in front of the
other, heel to toe.

Problem: Your shadow is 4 feet long (your own feet). What is the altitude
of the Sun?

Solution: The shadow box on the back of the astrolabe is divided in half.
One half is calibrated in sixes, the other in tens. When working with shadows
cast by the human body, it is convenient to use the side calibrated in sixes.

Set the edge of the alidade on the 4 along the bottom edge of the shadow
box, as in figure 3.31. Then read the altitude of the Sun on the altitude scale.
The altitude of the Sun is about 56.3°. In doing shadow-box problems, it is
helpful to visualize the triangle formed by your body, your shadow, and the
Sun’s ray that just grazes the top of your head.

12. Using the shadow box with long shadows:

Problem: Your shadow is 18 feet long (your own feet). What is the altitude
of the Sun?

Solution: As in problem 11, we use the sixes side of the shadow box, because
we are working with a shadow cast by a human body. However, the longest
shadows marked on the shadow box are 6 feet long and there is no way to
use an 18-foot shadow directly. This situation arises whenever the shadow is
longer than the gnomon that casts it.

As the longest possible shadow is 6, we perform the following calculation
involving similar triangles (see fig. 3.32). The 6-foot body casts an 18-foot
shadow. We ask how tall a gnomon would be if it cast a 6-foot shadow in
the same situation. That is, we solve for x in the second triangle, using the
fact that the two triangles are similar, Thus, 6/18 = /6 and we find x = 2.
That is, a 2-foot gnomon would cast a 6-foot shadow in this situation.

If the shadow is longer than the gnomon, it helps to turn the astrolabe
upside down (fig. 3.33). The horizontal line (6 units long) represents the
shadow. The edge of the alidade represents the Sun’s ray. Set the edge of the
alidade at 2 on the vertical side of the shadow box. The vertical side of the

FIGURE 3.30. Observing altitudes with the
astrolabe.
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triangle (2 units high) represents the human body. Read off the altitude of
the Sun on the altitude scale: the Sun is 19° above the horizon.

13. Measuring the altitude of a star:

To measure the altitude of a star, hold the astrolabe by the suspension
ring, so that you can look directly through the hole in the lower vane of the
alidade (fig. 3.30, right). Adjust the alidade until you can see the star through
the holes in both vanes. The fiducial edge of the alidade indicates the star’s
altitude on the altitude scale.

1

-

FIGURE 3.33. Fourth Group: Telling Time

14. Telling time during the day:
Problem: You are in Seattle on October 18. It is morning. After pacing off
the length of your own shadow (as in problems 11 and 12), you find that the

£=25° IS 20° ABOVE Sun is 20° above the horizon. What time is it?
EASTERN HORIZON

Solution: First, use the zodiac and calendar scales on the back of the
astrolabe to find the Sun’s position on the ecliptic (as in problem 4). On
October 18, the Sun is at the 25th degree of Libra (LIB 25°).

Now, turn the astrolabe over to use the front side (refer to fig. 3.34).
Position the rete so that the mark for LIB 25° is on the 20° almucantar on
the eastern side of the plate. (Since it is morning, the Sun is still to the east
of the meridian.) Now put the rule through the Sun (LIB 25°). The end of
the rule indicates the time of day by its position on the scale of hours marked
on the limb of the mater. (Ignore the hours marked on the rete.) The answer:
a few minutes before 9:00 aA.M.

The time obtained from the astrolabe by means of Sun observations is
most accurate in the early morning or the late afternoon. During the hours

just before and just after local noon, the Sun’s altitude changes very slowly.
Solar altitudes taken near noon cannot, therefore, determine the time with

precision.

15. Telling time at night:

Problem: On October 18, in Seattle, you observe that Procyon is 20° above
the eastern horizon. What time is it?

Solution: Orient the rete so that Procyon is on the 20° almucantar in the
eastern part of the sky (fig. 3.35). On October 18, the Sun is 25° within Libra.
Let the rule pass through the Sun (LIB 25°), for the Sun is the keeper of time.
Look and see where the rule hits the scale of hours on the limb of the mater.
The time is about 1:45 A.M.

The altitude of a star changes slowly when the star is near the meridian.
For this reason, the time will be determined most precisely if you use a star
well away from the meridian.

16. Telling the time of night in seasonal hours:

Problem: Consider the situation posed in problem 15. We are in Seattle
on October 18 and Procyon is 20° above the eastern horizon. What is the
time, expressed in seasonal hours?

Solution: Instead of using the scale of hours on the limb of the mater (for
telling time in equinoctial hours), use the seasonal hour curves on the latitude
plate. Orient the rete so that Procyon is on the 20° almucantar in the eastern

SUN (£x25°). part of the sky (fig. 3.35). Then find the Sun (LIB 25°) among the set of
(NOT YET THE . A
8th HOUR). seasonal hour curves. The Sun is two-thirds of the way between the curves

for the 7th and the 8th hour. Thus, the time is 7 2/3 seasonal hours after
sunset. Or, if you wish, 4 1/3 seasonal hours remain until sunrise. There is
no need to use the rule. You simply find the Sun’s position among the seasonal
hour curves.

FIGURE 3.35.



SOME APPLICATIONS OF SPHERICS ISI

17. Telling the time of day in seasonal hours

Problem: 1n Seattle, on the morning of September 3, the Sun is 30° above
the horizon. What is the time in seasonal hours?

Solution: On September 3, the Sun is at VIR 10°. Place this point of the
ecliptic 30° above the eastern horizon (it is morning). No seasonal hour marks
are drawn on the plate above the horizon. Therefore, we must locate the point
of the ecliptic that is diametrically opposite the Sun and examine its position
among the seasonal hour marks below the hotizon. The point of the ecliptic
diametrically opposite VIR 10° is PSC 10°. Now simply look and see where
PSC 10° is among the seasonal hour curves. The answer: the time is almost
three seasonal hours after sunrise. Note again that you need make no use of
the rule.

18. Alternative method for finding the seasonal hour of day:

The seasonal hour curves on the back of the astrolabe give an alternative
method for finding the time of day in terms of seasonal hours.

Problem: Consider again the situation of problem 17. In Seattle on the
morning of September 3, the altitude of the Sun is 30°. What is the time of
day, in seasonal hours?

Solution: First, we find the Sun’s meridian altitude for this day and place.
By the method of problem 6, find that in Seattle on September 3, the noon
Sun is 50° above the horizon.

Now, on the back of the astrolabe, set the alidade to the Sun’s noon altitude,
50° on the altitude scale (fig. 3.36). See which mark on the alidade hits the
noon circle (the circle labeled 6). The 6-circle hits the edge of the alidade at
about 10.5. (When used for this purpose, the marks on the alidade are simply
reference marks with no deep significance.) Now rotate the alidade undil it
comes to the Sun’s present altitude of 30° (fig. 3.37). Look to see where the
10.5 mark of the alidade lies among the hour curves. The answer: the time is
shortly before the third seasonal hour, which agrees with the answer in prob-
lem 17.

Fifth Group: Finding Clock Time

The time determined from the altitude of the Sun is called local apparent
time. In this group of problems, we explore ways to convert from local apparent
time to zone time (clock time). An explanation of the various measures of
time and of their relations to one another is given in section 5.9, so the reader
may wish to skip the fifth group of problems until after studying section s.9.

19. Finding the time of day directly in local mean time:

Your astrolabe is equipped with several modern advantages not found on
medieval astrolabes. One of these is the scale for the mean Sun on the rete
(Fig. 3.19). If we use this, we can directly obtain local mean time, rather than
local apparent time.

Problem: In Seattle, in the afternoon of November 23, the Sun is 10° above
the horizon. What is the local mean time? What is the zone time (which a
clock would read)?

Solution: On November 23 the Sun is at the beginning of Sagittarius (SAG
0°). Place the Sun (SAG 0°) 10° above the western horizon. To find the local
mean time directly, let the fiducial edge of the rule pass through the mean
Sun (the Nov 23 mark of the mean Sun scale). Read the time on the scale of
hours on the limb of the mater. The local mean time is about 2:50 p.m. (Note
that if you put the rule through the true Sun [SAG 0°] instead, the rule will
indicate the local apparent time, about 3:05 p.Mm.).

The final step is the conversion from local mean time to zone time (see
sec. 5.9). The longitude of Seattle is 122 1/2° W. The standard meridian for
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Pacific Time is 120° W. Seattle is therefore 2 1/2° west of its standard meridian.
The time difference between Seattle and the standard meridian is 2 1/2° X 4
min/° = 10 min. Since Seattle is west of the standard meridian, we add this
amount to the local mean time. Thus, a clock should read 3:15 p.M.

20. Finding the time of night directly in mean time:

Problem: In Seattle on the evening of July 23, you ignore Schiller’s warning
(in The Death of Wallenstein): “Not everyone doth it become to question the
far-off, high Arcturus.” You sight Arcturus and find that it is 30° above the
western horizon. What is the time by the clock (Pacific Daylight Time)?

Solution: Put Arcturus on the 30° almucantar in the west. Put the rule
through the mean Sun (the July 23 mark on the scale for the mean Sun).
Read the local mean time on the scale of hours of the mater: the local mean
time is about 10:30 P.M. As explained in problem 19, in Seattle we must add
10 minutes to the local mean time to obtain the standard zone time. Thus,
standard zone time is 10:40 p.M. In July, daylight saving time is in effect so
we must add an hour. The pacific daylight time is therefore 11:40 p.m.

The problems solved above cover some applications of the astrolabe, but by
no means all. As Chaucer wrote in the introduction to his Treatise on the
Astrolabe, “Understand that all the conclusions that have been found, or
possibly might be found in so noble an instrument as the astrolabe, are not
known perfectly to any mortal man in this region, as [ suppose.”

36 EXERCISE: USING THE ASTROLABE

First Group: Problems Involving Stars

1. In Seattle, where on the horizon does Sirius rise? (Answer: 27° south
of east.)

2. In Seattle, how high above the horizon is Rigel when it crosses the
meridian?

3. In Seattle, how long does Arcturus stay above the horizon? (Answer:
14 3/4 hours.)

Second Group: Problems Involving the Sun

4. What is the longitude of the Sun (i.e., its position on the ecliptic) on
June 13? (Answer: 21° within Gemini.)

5. In Seattle, where on the horizon does the Sun rise on summer solstice
(June 22)? Note that on summer solstice the Sun is just entering the
sign of Cancer. (Answer: 36° north of east.)

6. In Seattle, how high is the noon Sun on summer solstice (June 22)?
(Answer: 66° above the horizon.)

7. How long does the day last at Seattle on summer solstice (June 22)?

8. At Seattle on summer solstice (June 22), how long must we wait after
sunset for the Sun to be 18° below the horizon?

Third Group: Shadow Box Problems

9. Your shadow is 5 feet long, measured with your own feet. What is the
altitude of the Sun? (Answer: 50°.)
10. When the Sun is 15° above the horizon, how long a shadow will a 10-
foot pole cast? (Use the tens side of the shadow box.)
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Fourth Group: Telling Time

11. At Seattle on summer solstice, in the afternoon, you get home from
work when the Sun is still 20° above the horizon. What time is it?
(Answer: 5:55 p.M., local apparent time.)

12. In the same situation as in Problem 11, what is the time expressed in
seasonal hours? (Answer: 10 1/2 seasonal hours after sunrise, or 1 1/2
seasonal hours before sunset.)

13. In Seattle on April 1, in the carly evening you see Spica 20° above the
eastern horizon. What is the time, both in equinoctial hours and in
seasonal hours?

3.7 THE ASTROLABE IN HISTORY

Some Representative Astrolabes

Figure 3.38 is a front view of a brass astrolabe'” similar in design to the astrolabe
of your kit. This specimen dates from the late fourteenth or early fifteenth
century and is of French or Iralian workmanship. It is small, about 3 3/4” in
diameter, but is fairly well made. The features of this astrolabe are typical of
European astrolabes of its period.

Figure 3.39 is a photograph of the rete of the same astrolabe. The rete is
an open, metal lacework that represents the celestial sphere. The hole in the
center of the rete is the north celestial pole. The off-center circle is the ecliptic,
divided into signs of the zodiac, which are labeled with abbreviations: ARI
for Aries, TAU for Taurus, and so on. The cighteen small pointers represent
stars, and each is labeled with a name. The reader may recognize some of the
star names (e.g., Rigi/ is our “Rigel,” a star in Orion). Most of the star names
are in a late Gothic script. A few were added or reengraved at a later date
(probably the late sixteenth or early seventeenth century) in an Italic script.
For example, Cauda Leonis (“tail of the Lion”) identifies our Denebola.

The same rete may be used for any geographical location in the northern
hemisphere, but a plate must be engraved with the horizon, almucantors, and
azimuths for a particular latitude. This is why a complete astrolabe normally
came with a set of plates, numbering anywhere from a few to a dozen. The
plate shown in figure 3.40 was engraved on both sides to save bulk—one side
for latitude 40° and the other for 45°. This astrolabe has one other plate (not
shown), similarly engraved on both sides, for latitudes 49° and 50°. Usually,
the recess in the mater of an astrolabe was deep enough to allow storage of
the plates.

Figure 3.41 shows the back of a late fifteenth-century astrolabe,” about a
century younger than the astrolabe of figure 3.38. The main evidence for
dating is the date associated with the vernal equinox on the zodiac and calendar
scales. The modern forms employed for the numerals 4, 5, and 7 also point
to a later date. The features shown in figure 3.41 are typical of the backs of
medieval European astrolabes. Besides the zodiac and calendar scales, we see
a shadow box and a set of seasonal hour curves. There is also a rotatable
alidade (a crooked ruler) equipped with sights.

The fronts of astrolabes are stereographic projections of the celestial sphere
and vary little from astrolabe to astrolabe, regardless of the century or the
culture in which an instrument was constructed.' In contrast, the back of the
astrolabe offered blank space, which the maker could fill with whatever seemed
useful. Not surprisingly, the backs are much more variable than the fronts.
In particular, there were different traditions for astrolabe furnishings in Islam
and in Christian Europe.

FIGURE 3.38. An ecarly fifteenth-century astro-
labe of French or Italian workmanship. Photo-
graph courtesy of the Time Museum, Rockford,
Illinois.

FIGURE 3.39. The rete of the astrolabe in fig-
ure 3.38. Photo courtesy of the Time Museum.
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Figure 3.42 shows the back of a seventeenth-century Arabic astrolabe and
its alidade.” The tim of the upper half bears circular altitude scales divided
into 6° arcs, with 2° subdivisions. The upper left quadrant contains a family
of parallel, horizontal lines, which function, together with the altitude scale,
as a table of sines of angles.®

The upper right quadrant contains six equally spaced circular arcs cut by
two prayer lines. Observations of the Sun’s altitude can be used with these
curves to determine the proper times of day for prayer, as prescribed by the
Muslim religion.

In the the lower center, a shadow box is recognizable. The right side of
the box is for use with a gnomon seven units high; the left side, for use with
a 12-unit gnomon. As most people are between six and seven feet tall when
measured with their own feet, the right side of the shadow box is clearly
intended to be used to solve problems involving the shadows cast by the
human body. The left side was probably intended for use with a one-foot
(12-inch) gnomon.

FIGURE 3.40. A plate for latitude 40° from Around the rim of the lower half are cotangent scales, with unequally
the astroabe in figure 3.38. Photo courtesy of spaced marks. The user simply sets the alidade at the desired angle on the
the Time Museum. altitude scale (on the upper half of the back) and reads off the cotangent of

the angle on the cotangent scale (on the lower half). The cotangent scales are
useful for solving shadow problems.
Two semicircular tables of zodiacal signs and lunar mansions fll up the
Va : space between the shadow box and the cotangent scales. This astrolabe provides
a nice example of efficient use of the space on the back of the astrolabe. Its
features are typical of late Islamic astrolabes.

Stereographic Projection: Theory of the Astrolabe

Stereographic projection is one way (among many) of mapping a sphere onto
a flat surface. It is the projection on which the astrolabe is based. The nice
features of this projection are two: preservation of circles and conformality."
By preservation of circles, we mean that every circle on the celestial sphere gets
mapped onto the astrolabe surface as a circle (or as a straight line, which can
be regarded as a circle of infinite radius). By conformality, we mean that the
projection preserves angles: two circles that intersect on the celestial sphere
at a certain angle will intersect at the same angle on the face of the astrolabe.
These properties of stereographic projection make the construction of the rete
and latitude plates easy.

Figure 3.43 illustrates the principles of stereographic projection and shows
the first few steps in the construction of a latitude plate for 40° north latitude.
In the upper portion of the figure, we see a side view of the celestial sphere.
The south celestial pole SCP serves as the center of projection. Points on the
celestial sphere are projected from SCP onto the plane of the equator. For
FIGURE 3.41. The back of a fifteenth-century  example, to project point H of the tropic of Capricorn onto the plane of the
European astrolabe. National Museum of equator, we draw a line from SCP through A and extend this line until it
American History, Smithsonian Institution crosses the plane of the equator at /. Thus, A is the stereographic projection
(Photo No. 77-13841). of H. The projected tropic of Capricorn is a circle of radius H’C, centered
at C. The latitude plate takes shape in the lower portion of figure 3.43. The
center C of the latitude plate is the stereographic projection of the north
celestial pole.

The projections of the celestial equator and the tropic of Cancer are made
in the same way. The projections of these two circles are also circles centered

on C. For circles parallel to the equaror (such as the tropics), the more
southerly will appear larger in the projection. Thus, the tropic of Capricorn
is considerably larger than the tropic of Cancer on the plate of the astrolabe
(lower portion of figure).
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In the upper portion of figure 3.43, the horizon has been drawn for a
latitude of 40°. Recall that the geographical latitude is equal to the altitude
of the pole, that is, the angle between the north point NV of the horizon and
the north celestial pole NCP. The north point N of the horizon is projected
onto the plane of the equator as N’. Similarly, the south point § of the
horizon is projected as S”. Thus, on the latitude plate (lower portion of figure),
the horizon will be a circle, but it will be off-center from C. The radius of the
horizon circle will be one-half the distance NV'S’, and the center of the horizon
circle will be located halfway between N and §”.

Often (as in the astrolabe of your kit), the plate is cut off at the radius of
the projected tropic of Capricorn. In the lower part of figure 3.43, the part
of the horizon curve that lies south (or outside) of the tropic Capricorn has
been sketched in broken line. This part of the horizon curve would not appear
on the finished latitude plate.

Figure 3.43 illustrates the essential idea of stereographic projection. Of
course, a complete latitude plate would require a good deal more work: the
system of almucantars and azimuths still must be drawn in. In section 3.8 we
shall see how this is done.

History of the Astrolabe

The oldest surviving astrolabes are from the ninth and tenth centuries A.D.
Some eleven astrolabes have been dated before the year 1000, and all of these
originated in different parts of eastern Islam: Syria, Egypt, Iraq, and Persia.
The oldest Islamic astrolabes are rather severe in style, with simple, triangular
star pointers on the rete. In most cases, the backs are not as fully furnished
with supplementary scales as are the backs of later instruments. Nevertheless,
the essential features of the astrolabe were already standard by the ninth
century. After this period, the further development of the astrolabe consisted
largely in changes of style and ornamentation and the addition of supplemen-
tary scales that simplified the solution of specialized problems. Despite these
minor differences, a nineteenth-century astrolabe would have been, in most
of its features, perfectly comprehensible to a ninth-century astronomer of
Syria or Iraq. The stability of the astrolabe tradition through a thousand years
is a striking demonstration of the continuity between ancient and modern
astronomy. It also attests to the perfection already achieved by the astrolabe
in its early form.

Although the astrolabe reached its definitive form in medieval Islam, the
instrument is much older than one would guess from the oldest surviving
examples. The astrolabe was in fact an invention of the ancient Greeks.
Although far from conclusive, there is evidence that stereographic projection
was invented by Hipparchus (second century B.c.).” In any case, stereographic
projection was certainly in use by the first century B.C.

The Anaphoric Clock  Vitruvius,” the Roman writer on architecture of the
first century B.C., describes a water clock, the anaphoric clock, that evidently
made use of stereographic projection. The moving pare of the clock was a
drum, around which was wrapped a chain. A float was artached to one end
of the chain and a counterweight was attached to the other end. As water
filled a container, the float rose and the counterweight descended, causing
the drum slowly to turn at the rate of one rotation per day. Vitruvius tells
us that the flat face of the drum was inscribed with an image of the heavens,
including the zodiac circle. Moreover, the zodiac was drawn in such a way
that some signs were larger than others, depending upon their distance from
the center. This is a feature characteristic of stereographic projection. In front
of the drum was a grid of wires that represented the horizon and the seasonal

FIGURE 3.42. The back of a seventeenth-
century Arabic astrolabe from Pakistan.
National Museum of American History,
Smithsonian Institution (Photo No. 78-5996).
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projection.
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FIGURE 3.44. Fragment of a bronze sky plate
from an anaphoric clock, first or second century
A.D. The constellations represented are, from left
to right across the middle of the piece, Triangu-
lum, Andromeda, Perseus and Auriga. The

names Andromeda and Auriga are engraved near
the constellations. The ecliptic was represented
by a series of holes, into which a marker repre-
senting the Sun could be placed. The plate has
broken away along this line of holes, resulting
in the serrated edge now seen. Parts of three zo-
diac constellations may be seen along the edge:
Pisces, Aries and Taurus, from left to right. The
whole disk must have been about 120 ¢cm in di-
ameter and must have weighed about 40 kg.
Museum Carolino-Augusteum, Salzburg,

hours. The anaphoric clock was thus inside out with respect to later astrolabes.
The face of the drum (corresponding to the rete of an astrolabe) was a solid
sheet of metal and was placed behind an open grid of wires representing the
seasonal hours. Fragments of the zodiac disks of two such clocks have actually
been found—one at Salzburg in Austria and the other in the village of Grand
near Neufchiteau in northeastern France. Figure 3.44 shows the fragment of
the zodiac disk discovered at Sallzburg.21 Both fragments belong to the period
from the first to the third century a.p. Analysis of the fragments confirms
that the zodiac circle was positioned by means of stereographic projection.

Prolemy on the Planisphere  The oldest surviving mathematical treatise on
stereographic projection is a short work by Ptolemy (second century a.p.),
called The Planisphere. Prolemy sets out the mathematical procedures for
mapping the zodiac and other celestial circles onto a plane. His remarks make
it clear that he intended these procedures actually to be used in making a
concrete instrument. The original Greek text has not come down to us. What
we have is an Arabic translation, made around a.p. 1000, and a Latin translation
from the Arabic,” made around A.D. 1143 by Hermann the Dalmatian. It
appears that the end of the treatise is missing and that Ptolemy included more
information on practical construction than is now present in the text. From
the text we have, it is not clear whether Ptolemy’s instrument was an astrolabe
in the modern sense or a type of anaphoric clock. Although the mathemartics
of stereographic projection were known before Ptolemy’s time, his work was
important, for it provided a good summary of the mathematical technique
and served as a point of departure for later writers.

Theon of Alexandria The first treatise on an astrolabe in the modern sense
was probably written by Theon of Alexandria (fourth century a.p.). Theon
was a teacher of mathematics and a prolific writer. He worked hard at editing
the classics of Greek mathematics, for example, the Elements of Euclid. With
his daughter, Hypatia, Theon also wrote commentaries on the works of
Ptolemy, including the Afmagest. It is clear from remarks by later, Arabic
writers that Theon wrote a treatise on the astrolabe and that Theon’s astrolabe
had all the essential features that we now associate with the instrument.
Theon’s treatise has not come down to us. But we know what it contained,
for there are two surviving treatises on the astrolabe that were based in great
part on Theon’s. One of these is a work in Greek by John Philoponus,”
written around A.D. §30. The other is a work in Syriac by Severus Sebokht,
the Bishop of Nisibis, written before a.D. 660." These are the oldest surviving
works on the astrolabe. The works by Philoponus and Sebokht describe the
parts of the astrolabe and give directions for using it to solve various problems.
A simple way to give a rough idea of the contents of these works is to say
that section 3.5 has a fair amount of overlap with Philoponus and Sebokht.

Medieval Treatises on the Astrolabe in Arabic and Latin The tradition of
treatises on the astrolabe, begun by Theon of Alexandria, flourished in Islam.
In many cases, the first contact of Islamic astronomers with Greek science
was through the intermediary of the Syriac language. Islamic astronomers
began by making Arabic translations of Syriac astronomical works based on
Greek sources. The treatise of Sebokht is an example of such a Syriac work.
Shortly afterward, Arabic scholars began to make translations of Greek scien-
tific works directly from the Greek, and then to compose original astronomical
treatises directly in Arabic. The first Arabic language treatises on the astrolabe
were written as early as the eighth century a.p. In the ninth and tenth centuries,
the Middle East was the center of manufacture of astrolabes. By the eleventh
century, astrolabes were also being made, and tracts on the astrolabe were
being written, in Muslim Spain. The oldest treatise on the astrolabe thart has
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survived from Muslim Spain was by Ibn al-Saffar. His brother, Muhammad
Ibn al-Saffir, made at Cordoba in A.D. 1026 the earliest dated astrolabe that
has survived from this part of the world.”

Christian Europe received its first knowledge of the astrolabe—and its first
astrolabes as well—from Muslim Spain. By the beginning of the eleventh
century, astrolabes were known in southern France and Germany. By the
early twelfth century, the astrolabe had become so esteemed in Paris that
Abélard and Héloise named their son Astrolabe. It is significant that there
survive from this time several Arabic astrolabes to which Latin inscriptions
were added. It was not long, however, before European astronomers and
craftsmen were making their own astrolabes. A body of Larin treatises on the
astrolabe began to accumulate, at first based on or directly translated from
Arabic sources. One particularly famous and important treatise was a thir-
teenth-century Latin compilation based partly on the treatise by Ibn al-Saffar,
mentioned above. This compilation was falsely ascribed to Messahalla and
circulated for centuries under that name.” A reader with the necessary astro-
nomical knowledge could make an astrolabe from the directions given by
pseudo-Messahalla. In the late twelfth and early thirteenth centuries, European
astronomers began to write works on the use and the theory of the astrolabe
that were not translations but original compositions.” At first these treatises
were in Latin. But works on the astrolabe were soon composed in the vernacular
languages of Europe.

Chaucer on the Astrolabe  The oldest surviving, moderately sophisticated scien-
tific work in the English language is a Treatise on the Astrolabe, written by
Geoflrey Chaucer. Chaucer was well-educated in astronomical matters, by the
standards of fourteenth-century Englishmen, and the Canterbury Tales are
studded with astronomical references.”® He composed his treatise on the astro-
labe, as he tells us, for his ten-year-old son, Lewis. In one manuscript, the
treatise is subtitled “Bread and Milk for Children.” Chaucer’s treatise is not
very original but is based in large part on pseudo-Messahalla. Moreover,
Chaucer treats only the use, and not the construction of an astrolabe, as is
appropriate for a work addressed to a ten-year-old boy. Nevertheless, the work
is admirable for its clarity and patience. Figure 3.45 is a photograph of the
drawing of the rete as it appears in one of the better manuscripts. The star
at the tip of the tongue of the dog’s head is Sirius, the Dog Star, which
Chaucer calls Albabor. The mater and rete of the instrument are labeled, in
fourteenth-century English spellings, the moder and thy ret.

By Chaucer’s time, the astrolabe had become a fixture in learned circles
of Europe. The instrument was best known around the universities and in
the courts, for many a king kept an astrologer on retainer. The most important
use of the astrolabe was in time telling, especially for the purpose of casting
horoscopes. But, quite apart from its practical merits, the astrolabe was prized
as a mathematical tour de force that placed an image of the heavens in the
human hand. Astrolabes began to appear as decorative features in illuminated
manuscripts and on church facades, often merely as symbols of astronomical
learning.

A Renaissance Master: Georg Hartmann  For European astrolabes, the sixteenth
century was a golden age. Craftsmen produced astrolabes in greater quantity
and better quality than ever before. Considerable originality was also displayed
in the design of auxiliary scales and of new types of astrolabe. Georg Hartmann
(1489-1564) was one of the most accomplished makers of astrolabes. From
his workshop in Nuremberg he produced a steady stream of astrolabes, proba-
bly with the aid of assistants. Hartmann’s metal astrolabes were expensive.
Many were made for members of various European royal families. But Hart-
mann was also among the first makers of cheap astrolabes in kit form: he

157
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FIGURE 3.45. Drawing of an astrolabe from

a manuscript copy of Chaucer’s Treatise on the
. Phor Urine

Astrolabe. Photo courtesy of the Cambridge
University Library (MS. Dd.3.53).
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printed pares on paper, which the purchaser could cut out, glue to wood or
to heavier paper, and assemble. A number of other sixteenth-century engravers
produced paper astrolabes. The astrolabe kit the reader has in hand is perfectly
in keeping with a tradition that began in the Renaissance.

38 EXERCISE: MAKING A LATITUDE PLATE
FOR THE ASTROLABE

In this exercise, you can make a latitude plate, for some city of your choice,
. .2
to use with your astrolabe kit.”

Preliminary Drawing of the Celestial Sphere

1. On a large piece of paper (20" X 40”), draw a circle to represent the
celestial sphere, as in figure 3.46 (top). The radius of the circle must be
exactly the same as the radius of the celestial equator on your astrolabe
kit. Put in the north celestial pole P and the south celestial pole Q.
At right angles to PQ draw a long line to represent the plane of the
celestial equator. Figure 3.46 (top) represents the celestial sphere as
seen from the side.

2. Draw the horizon through the center C of the circle. The angle between
CP and the horizon (i.e., the altitude of the pole) should be equal to
the latitude of the place for which you wish to design the plate. Figure
3.46 has been drawn for latitude 40°.

3. Draw the almucantars. The almucantars are parallel to the horizon.
The method of locating the 20° almucantar is shown in figure 3.46
(top); it is 20° up from the horizon. A few other almucantars are also
shown. You should draw all the almucantars from 10° to 80°, at 10°
intervals. If you wish, you can put in one or more negative almucantars.
The almucantar for —12° is shown (12° below the horizon).

4. Put in the zenith point Z and the nadir point W. The nadir is the



SOME APPLICATIONS OF SPHERICS 159

Meridian

FIGURE 3.46. Construction of a latitude plate.
Step 1, construction of the almucantars.

point directly “underfoot,” just as the zenith is the point directly
overthead. Thus, ZW passes through C and is at right angles to the
horizon. This completes the preliminary construction.

Layout of the Plate: Almucantars

5. Begin the drawing of the acrual latitude plate, as in figure 3.46 (bottom).
First, locate the center C of the plate directly under line PQ. About
C as center, draw circles for the celestial equator and the two tropics.
These should have the same radii as on the plates that came with your
kit. Thus, determine the radii by measuring on the kit astrolabe. Draw
also the meridian line, through C, at right angles to the line PQ on
which C is located.

6. Project the horizon (the most important of the almucantars). In figure
3.46 (top), N and S are the north and south points of the horizon.
Their projections onto the plane of the equator are N and §’. Find
the midpoint D of line segment N'S’. Thus, in figure 3.46 (top), D
is exactly halfway between NV’ and §". ‘

7. Draw the horizon circle on the actual plate, as in figure 3.46 (bottom).
To do this, measure CD in figure 3.46 (top) and lay out this same
distance in figure 3.46 (bottom). D will be the center of the horizon
circle. The radius of the circle will be DN’ (or DS’, which is the same.
The dashed vertical lines show how N’, C, D, and §” are transferred
from figure 3.46 (top) to figure 3.46 (bottom). Bur it is not recom-
mended that you actually draw such lines. The best way to proceed is
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to measure CD and DN’ with a ruler, and to use these measurements
to draw the circle.

. Draw all the other almucantar circles in exactly the same way. Note

that for each almucantar, you must find two distances in figure 3.46
(top): the radius of the circle, and the distance of its center from C.
Every almucantar will have a different radius, as well as a different
location for its center. (Hint for drawing circles of very large radius:
make a beam compass. Tape the point of a compass to a meter stick.
Tape your pencil to the meter stick at the desired distance.)

. Project the zenith Z and nadir Wonto the plane of the equator (points

Z" and W). Transfer these points to the plate by measuring CZ” and
cw.

Completion of the Plate: Azimuths

10. Refer to figure 3.47. On the latitude plate, the azimuth circles must

II.

all pass through the zenith Z’ and the nadir W’ in exactly the same
way. It follows that the centers of the azimuth circles must all be
located on the same line, the line of centers, which is the perpendicular
bisector of line segment W'Z'. So, on your latitude plate, find the
midpoint of W Z" and draw a line through this point at right angles
to the meridian.

You can choose whether to put in azimuths at every 10° or at every
30°, Figure 3.47 shows the construction for placing them at every 30°.
On the plate, at the zenith point Z’, draw lines that make 30° and
60° angles with the meridian, as shown. Extend these lines until they
intersect the line of centers. The intersection points, 4, 4,, . . . A, are
the. centers of the azimuth circles. Simply place the point of your
compass at A, and open it up so that the pencil reaches the zenith
point Z’. Then draw the azimuth circle, form the horizon curve, on

Centers

FIGURE 3.47. Construction of a latitude plate.
Step 2, construction of the azimuths.
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through Z’, all the way to the opposite side of the horizon curve.
Draw the other azimuths in the same way.

The justification for this method lies in the conformality property
of stereographic projection. Azimuth circles all pass through the zenith.
Azimuth circles that make 30° angles with their neighbors on the real
celestial sphere must make these same angles on the astrolabe plate.

Finishing Up

12. Erase any construction lines showing on your plate. Cut out the plate
around the perimeter of the tropic of Capricorn, but be sure to leave
a short tab at the south end to fit into the notch of the mater. Label
your circles. Punch a small hole at C to receive the screw of your
astrolabe.

Optional Construction: Seasonal Hours FIGURE 3.48. Division of the tropic of Cancer

. . . . into seasonal hours.
13. Divide the half of the equaror that is below (outside of) the horizon

curve into twelve equal parts. To do this, place the center of a protractor
at C, and put marks on the equator at 15° intervals between the sunset
and sunrise points (the two points where the equator crosses the ho-
rizon).

Similarly, divide the portion of the tropic of Cancer that is below
(outside of) the horizon curve into twelve equal parts (see fig. 3.48).
On summer solstice, the Sun runs around the tropic of Cancer in the
course of the day. On this day, £ is the sunrise point and F is the
sunset point. Place the center of a protractor at C and measure angle
ECF (which is proportional to the length of the night). Divide ECF
into twelve equal parts (the twelve seasonal hours of the night), placing
marks on the tropic and labeling them as shown.

Do the same thing for the tropic of Capricorn.

For each seasonal hour (e.g., the second hour), you will have three
points: the points labeled 2 on the tropic of Cancer, the equator, and
the tropic of Capricorn. Connect these three points, from tropic to
tropic, by a smooth curve. One way to do this is to find, by trial and
error, using a compass, the location of the center and the necessary
radius. The seasonal hour curves are not really supposed to be circles.
But they are always drawn so on medieval astrolabes.
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4.1 THE JULIAN AND GREGORIAN CALENDARS

One may regulate a calendar by means of the Sun alone, by means of the
Moon alone, or by means of the Sun and Moon together. Thus, there are
three principal types of calendar: solar, lunar, and luni-solar. At various times
and in various cultures, all three types of calendars have been used. Indeed,
all three types are still in use today. A good example of a lunar calendar is
the Muslim calendar, which is still used in some countries of the Middle East,
and which is used worldwide in Muslim religious practice. The most important
luni-solar calendar still in use is the Jewish calendar. But the ancient Greek
and Babylonian calendars were also of this type. The most familiar example
of a solar calendar is the Gregorian calendar, which is used nearly worldwide
today. However, to reckon time reliably in astronomical and historical work,
one must also understand its relation to the Julian calendar that preceded it.

The Julian Calendar

Structure of the Julian Calendar The Julian calendar was instituted in Rome
by Julius Caesar in the year we now call 45 B.C.. It reached its final form by
A.p. 8 and continued in use without further change until A.p. 1582, when it
was modified by the Gregorian reform. The Julian calendar adopts a mean
length of 365 1/4 days for the year. This is in good agreement with the length
of the tropical year, that is, the time from one spring equinox to the next.
The Julian calendar is therefore a solar calendar and keeps good pace with
the seasons. Two kinds of calendar year are distinguished: common years and
leap years. Three years of every four are common years of 365 days each. One
year of every four is a leap year of 366 days.

The months of the calendar year, and the number of days contained in

them are
January 31 July 31
February =~ 28 (29inleap year) August 31
March 31 September 30
April 30 October 31
May 31 November 30
June 30 December 31

The average length of the synodic month (the time from one new Moon to
the next) is about 29 1/2 days. But, except for February, every month in the
Julian calendar is longer than this. The calendar months therefore have no
fixed relation to the Moon: the new Moon does not, for example, fall on a
fixed day of the month.'

Years are customarily counted from the beginning of the Christian era.
The first year of the Christian era is A.D. 1. The immediately preceding year
is 1 B.c. There is no year o. This arrangement is inconvenient for doing
arithmetic. More convenient is the astronomical way of representing years
before the beginning of the Christian era by negative numbers. In this system,
the year immediately before a.p. 1 is called the year o; the year before that,
—1, and so on:

Historical way Astronomical way
AD. 2 +2
AD. 1 +1
1 B.C. 0
2 B.C. -1
3 B.C. -2
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The utility of the astronomical system can be made clear by an example. Let
us compute the time elapsed between January 1, 23 B.C. and January 1, A.D.
47. The simplest approach is to express the B.c. date astronomically and then
subtract:

23 B.C. = —22.

47 —(=22) = 69.

Thus, 69 years elapsed between the two dates.

The leap years are those evenly divisible by four: .. 4, 8, 12, and so on.
This rule may be extended to the years before the beginning of the Christian
era, if the years are expressed astronomically: o, —4, —8, —12 are all leap years.
Note that if the years are expressed in the historical way the leap years are 1,
5, 9, 13 B.C.

The Roman manner of designating the days of the month was not the
same as our own. The first day of the month was called Kalendae, or Kalends
in English. The sth of most months was called Nonae (Nones in English).
The 13th day of most months was called Idus (Ides). However, four months
had the Nones on the 7th and the Ides on the 15th (March, May, July,
October). Other days of the month were specified in terms of the days
remaining until the next of these three guideposts. For example,

Our way  Roman way

April 1 Kalends of April

2 4th day before the Nones of April
3rd day before the Nones of April
the day before the Nones of April
Nones of April
8th day before the Ides of April
7th day before the Ides of April

NN AW

1 3rd day before the Ides of April
12 the day before the Ides of April
13 Ides of April

14  18th day before the Kalends of May
15 17th day before the Kalends of May

29 3rd day before the Kalends of May
30 the day before the Kalends of May
May 1 Kalends of May

The Roman way of counting the days continued in use to the end of the
Middle Ages. In manuscripts of the fifteenth century, for example, one sees
the Roman way and the modern way of counting used side by side. The
fifteenth century was a period of transition. Note also the Roman manner of
inclusive counting. We would say that April 11 is two days before the Ides. But
the Romans called it the third day before the Ides—counting the 11th, rath,
and 13th. The Nones was so called because it came nine days before the Ides
(counting inclusively). Time expressions based on inclusive counting survive
in the Romance languages. For example, in French, an expression for a week
is huit jours, literally eight days. Similarly, for two weeks, the French often
say quinze jours, fifteen days.

The Julian calendar did not exist before 45 B.c., but that does not prevent
us from using it as if it did. We say that Xerxes invaded Greece and fought
the battle of Salamis in 480 B.c., or that Alexander died in 323 B.C. A Julian
calendar date used in this way is always a translation into modern terms of
a more ancient, and now defunct, system of chronology. An ancient Greek,
for example, might have said that the battle of Salamis was fought in the year
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that Kalliades was archon of Athens® and that Alexander died during the archon-
ship of Kephisodoros.3

History of the Julian Calendar The Roman calendar that Caesar eliminated
was a luni-solar calendar, consisting of twelve months.”” There were four
months of 31 days, Martius, Maius, Quinrilis (= July), and October; seven of
29 days, lanuarius, Aprilis, [unius, Sextilis (= August), September, November,
and December; and one of 28 days (Februarius). The length of the year was
therefore 355 days, in fair agreement with the length of twelve lunar months.
Buct as this year was some ten days shorter than the tropical or solar year, its
months would not maintain a fixed relation to the seasons. Consequently,
roughly every other year an intercalary month, called [ntercalaris or Mercedo-
nius, consisting of 27 or 28 days, was inserted after February 23, and the five
remaining days of February were dropped. Thus, the year with an intercalated
month consisted of 377 or 378 days. Some scholars suggest that the intercalary
month alternated regularly between its two possible lengths,” so that the
calendar years went through the regular four-year cycle: 355, 377, 355, 378.
Four successive calendar years therefore totaled 1,465 days, and the average
year amounted to 366 days, about one day longer than the tropical year. The
intercalation was in the charge of the pontifices (priests of the state religion).
But, through neglect, incompetence, or corruption, the necessary intercalations
had not been attended to, and by 50 B.C. the calendar was some two months
out of step with the seasons.

Julius Caesar, who had been elected Pontifex Maximus in 63 B.C., aban-
doned the old luni-solar calendar entirely and adopted a purely solar calendar.
In the technical details he followed the advice of Sosigenes, a Greek astronomer
from Alexandria. To bring the calendar back into step with the seasons, ir
was decided to apply two intercalations to the year 46 B.c.. The first was the
customary insertion of a month following February 23, which was scheduled
to be done in that year anyway. The second was the insertion of two additional
months totaling 67 days between the end of November and the beginning of
December, to make up for previous intercalations that had been neglected.
The effect of this was to bring the vernal equinox back to March. After this
annus confusionis (“year of confusion”), as it was called by Macrobius, the
new calendar began to operate in 45 B.C..

The year was to consist of 365 days, ten more than in the old calendar.
To make up the new total, the ten days were distributed among the old 29-
day months: January, Sextilis, and December received two days each, while
April, June, September, and November each gained one day. The old 31-day
months (March, May, Quintilis, and October) remained unchanged,” as did
February. An intercalary day was to be added to the month of February one
year out of every four. After Caesar’s assassination in 44 B.C., the Senate
decided to honor his memory by renaming his birth-month (Quintilis) Iulius.

Unfortunately, owing to a mistake by the pontifices, the intercalation was
actually performed once every three years so that, by 9 B.C., 12 intercalary
days had been inserted, while Caesar’s formula had called for only 9. The
pontifices, who were inclusive counters like all Romans, had misunderstood
Sosigenes’ prescription. To bring the calendar back into step with the original
plan, Augustus decreed in 8 B.c. thart all intercalations be omitted until A.p.
8. In that year, the Roman Senate honored Augustus by renaming for him
the month of Sextilis, since it was in this month that Augustus was first
admitted to the consulate and thrice entered the city in triumph. From A.D.
8 the Julian calendar operated without further change until the Gregorian
reform of 1582.

The week was not originally a feature of the Julian calendar. There is some
evidence for an eight-day cycle of market days in Rome. The seven-day week
seems to have originated from the Jewish practice: six days of work and one
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day of rest. The Jews had no names for the days of the week, except the
Sabbath, and simply numbered them. As the week penetrated to the western
Mediterranean, the practice grew up of naming the days of the week after
the planets.‘g Most of these planetary names are still apparent in the French:

Planet Latin French English
Saturn Dies Saturni Samedi Saturday
Sun Dies Solis Dimanche Sunday
Moon Dies Lunae Lundi Monday
Mars Dies Martis Mardi Tuesday
Mercury Dies Mercurii Mercredi Wednesday
Jupiter Dies Jovis Jeudi Thursday
Venus Dies Veneris Vendredi Friday

In the Teutonic languages, the names of the Roman deities Mars, Mercury,
Jupiter, and Venus were replaced by their counterparts Tiu, Woden, Thor,
and Frigga. The seven-day planetary week was made official by the emperor
Constantine in 32I.

The practice of reckoning years from the beginning of the Christian era
was introduced in the sixth century a.p. by the Roman abbot Dionysius
Exiguus. Before this time, a year was commonly specified by the names of the
consuls for that year or, later, in terms of the number of years elapsed since the
beginning of the reign of some emperor, for example, Diocletian. In his tables
for computing the date of Easter, Dionysius Exiguus identified a.p. 532 with
year 248 of the Diocletian era. This fixed once and for all the relation of the
Churistian era to the Julian calendar—but not quite correctly. Modern scholarship
has placed the actual year of Jesus’s birth between 8 and 4 B.C.

The Gregorian Reform

The Error in the Julian Year The Julian year (the average length of the Julian
calendar year) is 365.25 days. But the time required for the Sun to travel from
one tropic, all the way around the ecliptic, and return to the same tropic is
about 365.2422 days. This is called the #ropical year. Obviously, the tropical
year can only be measured with such precision over an interval of many years.
The Julian year exceeds the tropical year by 0.0078 day:

1 Julian year = 1 tropical year + 0.0078 day.

In any one year, or even over a period of several years, this discrepancy
would not be noticed. But over the centuries, it mounts up. In A.D. 300, to
take a definite example, the vernal equinox fell on March 20. For the next
several decades the equinox continued to fall on March 20 or 21. (The date
of the equinox oscillated between the 20th and 21st, because of the leap day
system.) Bur gradually, over a longer period of time, a systematic shift in the
date of the equinox occurred. Consider an interval of 400 years. If we multiply
the relation above by 400 we obtain

400 Julian years = 400 tropical years + 400 X 0.0078 day

= 400 tropical years + 3.12 days.

Therefore, the spring equinox of the year 700 did not take place on March
20, but on March 17. Because of the difference in length between the Julian and
the tropical year, the date of the equinox retrogresses through the fulian calendar
by about 3 days every 400 years. By the sixteenth century, the equinox had
worked its way back to the 11th of March.

The Easter Problem  The principal motive for reform was the desire to correct
the ecclesiastical calendar of the Catholic church, particularly the placement
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of Easter. As Easter is the festival of the resurrection, its celebration depended
on the proper dating of the crucifixion and the events around it. According
to the Gospels, the last supper occurred on a Thursday evening; the trial,
crucifixion, and burial of Christ on Friday. On the evening of the same Friday,
the Passover was celebrated by the Jews.” Finally, the resurrection occurred
on the following Sunday.lo The Passover, around which all these events center,
is celebrated for the week beginning in the evening of the 14th day of Nisan
in the Jewish calendar. Now, the Jewish calendar is of the luni-solar type,
and the beginning of each month corresponds closely to a new Moon. It
follows, then, that the 14th day of Nisan was the date of a full Moon. Moreover,
the month of Nisan was traditionally connected with the spring equinox: a
month was intercalated before Nisan whenever necessary to ensure that Passover
week did not begin before the Jewish calendrical equinox. The proper time to
celebrate Easter was therefore shortly after the first full Moon of spring.

In the early church, this general principle was interpreted in a number of
different ways. Some Christians celebrated Easter on the third day after the
full Moon, regardless of whether this was a Sunday or not. Most, however,
celebrated Easter on a Sunday, although there was disagreement over which
Sunday was proper. An attempt to regularize practice was made by the Council
of Nicaea in 325. The rule adopted by the Council, expressed somewhat
inexactly, was this: Easter is the Sunday following the full Moon that occurs
on or just after the vernal equinox. The Council also decreed that if the date
of Easter, so calculated, coincided with the Jewish Passover, then Easter should
be celebrated one week later. This description of the Council’s rule is the one
commonly encountered today in nontechnical books on the subject, but it is
inexact for the following reason: neither the true Sun nor the true Moon was
used in the determination of Easter. For example, the Council fixed the date
of the equinox at March 21. (This was correct for A.p. 325, as we have seen.)
Moreover, the determination of the Easter Moon was not carried out through
observation of the real Moon, but through calculation based on lunar cycles.

The Council of Nicaea does not seem to have regularized practice regarding
the Moon, for different lunar cycles continued to be used in the East and the
West. Thus, Easter was sometimes celebrated on different Sundays by different
sects. For example, in A.D. 501, Pope Symmachus, following the cycle then
used at Rome, celebrated Easter on March 25. But his political and religious
opponents at Rome, the Laurentians, followed the Greek cycle and celebrated
Easter that year on April 22. Moreover, they sent a delegation to the emperor
at Constantinople to accuse Symmachus of anticipating the Easter festival."
Uniform practice between East and West was not achieved until 525, when
the nineteen-year Metonic cycle was introduced at Rome. It had long been
used in the East, where Greek influence predominated. Tables were prepared,
based on this cycle, by means of which the date of Easter in any year could
readily be determined. Again, the date of the full Moon on or next after March
21 was determined from these tables, not from astronomical observation; the
Sunday following was Easter. Even after 525, other cycles continued to be used
in Gaul and Britain. Feeling often ran high. The celebration of Easter on the
wrong day was often deemed sufficient grounds for excommunication."” Com-
pletely uniform practice across Europe was not achieved until about .p. 800."

The Reform  In practice, then, Easter was celebrated on a Sunday in March
or April following March 21. But by the sixteenth century the date of the
equinox had retrogressed to March 11, so that Easter was steadily moving
toward the summer. The need for reform had long been felt, but the state of
astronomy in Europe had been inadequate for the task."* In 1545, the Council
of Trent authorized Pope Paul III to act, but neither Paul nor his successors
were able to arrive at a solution. Work by the astronomers continued, however,
and when Gregory XIII was elected to the papacy in 1572 he found several
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proposals awaiting him and agreed to act on them. The plan finally adopted
had been proposed by Aloysius Lilius (the Latinized name of Luigi Giglio,
an lralian physician and astronomer, d. 1576). The final arrangement was
worked out by Christopher Clavius, Jesuit astronomer and tireless explainer
and defender of the new system.” The reformed calendar was promulgated
by Gregory in a papal bull issued in February, 1582.

The most difficult part of the reform involved adjustments to the luni-
solar ecclesiastical calendar used for calculating Easter. The details of this part
of the reform need not concern us. New lunar tables were constructed to restore
the ecclesiastical Moon to agreement with the true Moon. This reformed luni-
solar calendar has never been accepted by the Orthodox churches, which still
reckon Easter according to the tables that the Roman Church abandoned in
1582. As a result, the Orthodox Easter may coincide with the Roman Easter,
or it may lag behind it by one, four, or five weels. "¢

By contrast, the reform of the solar, or Julian, calendar was simple. First,
to bring the vernal equinox back to the 21st of March, the day following
October 4, 1582, was called October 15. That is, ten days were omitted.
However, there was no break in the sequence of the days of the week: this
sequence has therefore continued uninterrupted since its inception. Second,
to correct the discrepancy between the lengths of the calendar year and the
tropical year, it was decided that three leap days every 400 years were to be
omitted. These were to be centennial years not evenly divisible by 400. Thus,
in the old Julian calendar the years 1600, 1700, 1800, 1900, 2000, 2100, and
so on, were all leap years. But under the new Gregorian calendar, 1700, 1800,
1900, and 2100 are not leap years.

The new calendar was immediately adopted in the Catholic countries of
southern Europe, but in the Protestant north, most refused to go along.
Denmark did not change over until 1700; Great Britain, not until 1752. In a
few countries that had been dominated by the Eastern church, the change
was not made until the twentieth century. Thus, Russia did not adopt the
Gregorian calendar until 1918, after the revolution.

Using the Julian and Gregorian Calendars

In historical writing, the common practice is to use the Julian calendar for
dates before 1582 and the Gregorian for dates after 1582. Consistent practice
therefore requires translating many Julian calendar dates—for example, from
seventeenth-century England—into their Gregorian equivalents. However, in
astronomical discussion it is sometimes preferable to use the Gregorian calendar
even for the remote past, since the dates of the equinoxes and solstices are
nearly fixed in that calendar. The only safe practice is to clearly specify which
calendar is being used whenever there is any possibilizy of confusion. Sometimes,
in older writing, one comes across references to the “old style” and “new
style,” which refer to the Julian and the Gregorian calendar, respectively.
Table 4.1 may be used to make conversions. For example, Russia changed
from the old to the new calendar on February 1, 1918 (Julian calendar). Let
us express this date in terms of the Gregorian calendar. From table 4.1, we
find that in 1918 there was a 13-day difference between the two calendars. The
corresponding Gregorian date is therefore February 14, 1918. To put things
as clearly as possible, “February 1, 1918 (Julian calendar)” and “February 14,
1918 (Gregorian calendar)” are two different names for the same day: it was
a Thursday. Note that when the Gregorian calendar was promulgated in 1582
the difference between the two calendars was 10 days. But 1700, 1800, and
1900 were leap years in the Julian calendar, and not in the Gregorian; thus,
by 1918 the difference had grown to 13 days. The Russian Orthodox Church
uses the Julian calendar to this day. They celebrate Christmas on December
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TABLE 4.1. Equivalent Dates in the Julian and Gregorian Calendars

Time Interval Difference

From =500 Mar 6 Julian (= Mar 1 Gregorian) -5 days
Through —300 Mar 4 Julian (= Feb 28 Gregorian)

From —300 Mar 5 Julian (= Mar 1 Gregorian) —4 days
Through —200 Mar 3 Julian (= Feb 28 Gregorian)

From —200 Mar 4 Julian (= Mar 1 Gregorian) ~3 days
Through —100 Mar 2 Julian (= Feb 28 Gregorian)

From —100 Mar 3 Julian (= Mar 1 Gregorian) —2 days
Through 100 Mar 1 Julian (= Feb 28 Gregorian)

From 100 Mar 2 Julian (= Mar 1 Gregorian) —1 day
Through 200 Feb 29 Julian (= Feb 28 Gregorian)

From 200 Mar 1 Julian (= Mar 1 Gregorian) +0 days
Through 300 Feb 28 Julian (= Feb 28 Gregorian)

From 300 Feb 29 Julian (= Mar 1 Gregorian) +1 day
Through 500 Feb 28 Julian (= Mar 1 Gregorian)

From 500 Feb 29 Julian (= Mar 2 Gregorian) +2 days
Through 600 Feb 28 Julian (= Mar 2 Gregorian)

From 600 Feb 29 Julian (= Mar 3 Gregorian) +3 days
Through 700 Feb 28 Julian (=Mar 3 Gregorian)

From 700 Feb 29 Julian (= Mar 4 Gregorian) +4 days
Through 900 Feb 28 Julian (= Mar 4 Gregorian)

From 900 Feb 29 Julian (= Mar 5 Gregorian) +5 days
Through 1000 Feb 28 Julian (= Mar 5 Gregorian)

From 1000 Feb 29 Julian (= Mar 6 Gregorian) +6 days
Through 1100 Feb 28 Julian (= Mar 6 Gregorian)

From 1100 Feb 29 Julian (= Mar 7 Gregorian) +7 days
Through 1300 Feb 28 Julian (= Mar 7 Gregorian)

From 1300 Feb 29 Julian (= Mar 8 Gregorian) +8 days
Through 1400 Feb 28 Julian (= Mar 8 Gregorian) *

From 1400 Feb 29 Julian (= Mar 9 Gregorian) +9 days
Through 1500 Feb 28 Julian (= Mar 9 Gregorian)

From 1500 Feb 29 Julian (=Mar 10 Gregorian) +10 days
Through 1700 Feb 28 Julian (= Mar 10 Gregorian)

From 1700 Feb 29 Julian (= Mar 11 Gregorian) +11 days
Through 1800 Feb 28 Julian (= Mar 11 Gregorian)

From 1800 Feb 29 Julian (= Mar 12 Gregorian) +12 days
Through 1900 Feb 28 Julian (= Mar 12 Gregorian)

From 1900 Feb 29 Julian (= Mar 13 Gregorian) +13 days

Through 2100 Feb 28 Julian (= Mar 13 Gregorian)

25 of the Julian calendar, which is January 7 in the Gregorian—13 days after
the Christmas of the Roman Church.

As a second example of the relation between the two calendars, consider
the birth date of George Washington. In encyclopedias, this date is given as
February 22, 1732. However, an entry in the Washington family Bible preserved
at Mt. Vernon reads

George Washington Son to Augustine & Mary his Wife was Born ye 11th
Day of February 1731/2 about 10 in the Morning & was Baptiz’d on the
30th of April following."”

Two features of this entry require comment. First, the date of birth recorded
by the family was the 11th of February (Julian calendar). Virginia in 1732 was
an English colony and therefore used the same calendar as did the English.
The colonies changed with England to the Gregorian calendar in 1752. The
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date that eventually became a national holiday, February 22, is the Gregorian
equivalent of the date recorded in the family Bible. In 1732 there was an 11-
day difference between the two calendars.

The second feature that requires comment is the designation of the year
as 1731/2. There were several different practices regarding the beginning of
the year. The most common initial dates were December 25, January 1, March
1, and March 25. These different reckonings of the year were known as
styles—not to be confused with the usage o/d style, new style for designating
the Julian and Gregorian calendars. In England, the Nativity style (December
25) was used until the fourteenth century, when it was superseded by the
Annunciation style (March 25). This was the style still in use in the first half
of the eighteenth century, when Washington was born. That is, in England
and the English colonies the year officially began on March 25. However, by
this time most of Europe was using the January 1 style. Therefore, to avoid
ambiguity, it was common to specify both years in cases where the date fell
between January 1 and March 24. The designation 1731/2 therefore means
“r731 in the March 25 style, but 1732 in the January 1 style.” The January 1
style was adopted in England in 1752 in connection with the change to the
Gregorian calendar. The January 1 style is always used in modern historical
writing,

4.2 EXERCISE: USING THE JULIAN
AND GREGORIAN CALENDARS

1. Octavian assumed imperial powers and took the name Augustus in
January, 27 B.c. He died in August, .. 14. How long did he reign?

2. The following list gives the Julian calendar dates of the vernal equinox
over an interval of 3,000 years.

Date of vernal equinox
Year (Julian calendar)

A.D. 1500 11 March

1000 14 March

500 18 March

0 22 March

-500 26 March

-1000 30 March
—-1500 3 April

Express these dates in terms of the Gregorian calendar. For year
—500 and later, use table 4.1. For the earlier dates you will have to apply
the rule for the leap years governing the centurial years in the Gregorian
calendar.

3. Consider the following common remark: Isaac Newton was born in
1642, the year of Galileo’s death. The popularity of this remark stems
from its symbolic value. It seems to signify a passing of the torch of
intellect. And it even seems to be true. Galileo died on January 9, 1642.™*
Newton was born on December 25, 1642.”

However, as Galileo lived in Italy, where the Gregorian reform was
immediately accepted, the date of his death is naturally expressed in
terms of the Gregorian calendar. Newton was born in England when
that nation still used the Julian calendar. (Both dates have been expressed
in the January 1 style.)

Express both dates in terms of the same calendar—first try the Julian,
then the Gregorian. Do both fall in the same calendar year in one system
or the other?
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4. Compute the length of the Gregorian year, that is, the average length
of the calendar year according to the Gregorian calendar. (Hint: begin
by counting the number of common years and the number of leap years
in the 4o0-year cycle.) Is the Gregorian year too long or too short in
comparison with the tropical year? How much time will elapse before
the Gregorian calendar loses step with the Sun by one day? The tropical
year is 365.2422 days long.

4.3 JULIAN DAY NUMBER

The Julian day number is a count of days, widely used by modern astronomers.
The day January 1, 4713 B.C. is called day zero, and for each successive day
the count increases by I.

For example, the Julian day number of December 31, A.D. 1899, is 2,415,020.
The Julian day number of September 15, A.D. 1948, is 2,432,810. Knowledge
of the Julian day numbers makes the calculation of time intervals simple:

September 15, 1948 = J.D. 2,432,810
December 31, 1899 = J.D. 2,415,020

Difference 17,790

Thus, 17,790 days elapsed between the two dates. The calculation of this
time interval by some other method would be much more complicated, for
it would involve the reckoning of months of different lengths and the careful
counting of leap days.

When the Julian day number is a whole number, as in the examples quoted
so far, it signifies Greenwich mean noon of the calendar day:

September 15, 1948, noon (at Greenwich) = j.p. 2,432,810

If the time of day falls after noon, the appropriate number of hours may be
added to the Julian day number:

September 15, 1948, 6 p.m. (Greenwich) = j.p. 2,432,810°6",

where ¢ and * stand for days and hours. If the time falls before noon, the
appropriate number of hours must be subtracted from the Julian day number:

September 15, 1948, 9 A.M. (Greenwich) = J.p. 2,432,809”{21}’.

The Julian day number, although used now as a continuous count, origi-
nally specified the location of the day within a repeating period, called the
Julian period. The length of the Julian period is 7,980 years. In principle,
after 7,980 years have elapsed the Julian day numbers are supposed to start
over again. (Whether the astronomers will actually consent to begin the count
of days afresh at the start of the second Julian period in A.D. 3268, we shall
have to wait and see!) In publications from the early part of the twentieth
century, one often sees the expression “day of the Julian period,” where we
would now say, “Julian day number.” The two expressions mean the same
thing,

The Julian period and the practice of numbering the days within this
period were introduced in 1583 by Joseph Justus Scaliger, the founder of
modern chronology.” The period was formed by combination of three shorter
periods. The first of these is the 19-year luni-solar (or Metonic) period, dis-
cussed in section 4.7. The second is a 28-year calendrical period: for any two
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TABLE 4.2 Julian Day Number: Century Years. Days Elapsed at Greenwich Mean Noon of January 0

Julian Calendar Gregorian Calendar
AD. 0 172 1057 AD. 600 194 0207 AD. 1200 2159357 A.D. 15001 226 8923
100 117 7582 700 197 6732 1300 219 5882 1600 230 5447
200 179 4107 800 201 3257 1400 223 2407 1700+ 2341972
300 183 0632 900 2049782 1500 226 8932 18007 237 8496
400 186 7157 1000 208 6307 1600 230 5457 19001 241 5020
500 190 3682 1100 2122832 1700 2341982 2000 245 1544

tCommon years.

years in the Julian calendar that are 28 years apart, all the days of the year
will fall on the same days of the week. Thus, the calendars for the years 1901,
1929, 1957, 1985, and so on, are exactly the same. (Note that in the Gregorian
calendar, this pattern is broken by the three century years in four that are
not leap years.) The third period, called indiction, was a 15-year taxation period
introduced in the Roman empire in the third century A.p. The Julian period
is simply the product of these three: 19 X 28 X 15 = 7980 years. Scaliger’s
starting year for the Julian period, 4713 B.C., is the most recent year in which
all three periods were simultaneously at their beginnings.

Tables 4.2, 4.3, and 4.4 provide a convenient way of obtaining the Julian
day number for any dare.

Preceprs for Use of the Tables for Julian Day Number

Dates after the Beginning of the Christian Era  For years before 1500, the date
must be expressed in terms of the Julian calendar. For the year 1800 and
thereafter, the date must be expressed in terms of the Gregorian calendar.
Between the dates 1500 and 1800, cither calendar may be used. In any case,
the date must be expressed in terms of Greenwich mean time.

1. Enter the table of century years (table 4.2) with the century year immedi-
ately preceding the desired date and take out the tabular value. If the
Gregorian calendar is being used and if the century year is marked with
a dagger 7, note this fact for use in step 2.

2. Enter the table of the years of the century (table 4.3), with the last two
digits of the year in question and take out the rabular value. If the
century year used in step 1 was marked with a dagger ', diminish the
tabular value by one day unless the tabular value is zero.

3. Enter the table of the days of the year (table 4.4) with the day in
question, and take out the tabular value. If the year in question is a
leap year, and the table entry falls after February 28, add one day to
the tabular value. The sum of the values obtained in steps 1, 2, and 3
then gives the Julian day number of the date desired. This Julian day
number applies to noon of the calendar date.

First Example: September 15, A.D. 1948, Greenwich mean noon:

1. Century year 1900 241 5020
2. Year of the century 48 17532 —1= I 7531
3. Day of the year September 15 258 + 1= 259
Julian day number 243 2810

Note that in step 2 the tabular value has been diminished by 1 because 1900
is a common year (marked with " in table 4.2). In step 3, the tabular value



TABLE 4.3. Julian Day Number: Years of the Century. Days Elapsed at Greenwich Mean Noon of January 0

0§ 0 20* 7 305 40* 14 610 60* 21915 80* 29220
1 366 21 7671 41 14 976 61 22281 81 29 586
2 731 22 8036 42 15 341 62 22 646 82 29951
3 1096 23 8 401 43 15706 63 23011 83 30 316
4* 1461 24* 8766 44> 16 071 64* 23 376 84* 30 681
5 1827 25 9132 45 16 437 65 23742 85 31 047
6 2192 26 9497 46 16 802 66 24107 86 31 412
7 2557 27 9 862 47 17 167 67 24 472 87 31777
8* 2922 28* 10227 48* 17532 68* 24 837 88* 32 142
9 3288 29 10 593 49 17 898 69 25203 89 32508
10 3653 30 10 958 50 18 263 70 25568 90 32873
11 4018 31 11 323 51 18 628 71 25933 91 33238
12* 4383 32* 11 688 52* 18 993 72* 26298 92* 33603
13 4749 33 12 054 53 19 359 73 26 664 93 33 969
14 5114 34 12 419 54 19 724 74 27 029 94 34 334
15 5479 35 12784 55 20 089 75 27 394 95 34 699
16* 5 844 36* 13 149 56* 20 454 76* 27759 96* 35 064
17 6210 37 13 515 57 20 820 77 28 125 97 35 430
18 6575 38 13 880 58 21185 78 28 490 98 35795
19 6 940 39 14 245 59 21550 79 28 855 99 36160
*Leap year.
§Leap year unless the century is marked T.
In Gregorian centuries marked t, subtract one day from the tabulated values for the years 1 chrough 99.
TABLE 4.4. Julian Day Number: Days of the Year
Day of Mo. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 1 32 60 91 121 152 182 213 244 274 305 335
2 2 33 61 92 122 153 183 214 245 275 306 336
3 3 34 62 93 123 154 184 215 246 276 307 337
4 4 35 63 94 124 155 185 216 247 277 308 338
5 5 36 64 95 125 156 186 217 248 278 309 339
6 6 37 65 96 126 157 187 218 249 279 310 340
7 7 38 66 97 127 158 188 219 250 280 311 341
8 8 39 67 98 128 159 189 220 251 281 312 342
9 9 40 68 99 129 160 190 221 252 282 313 343
10 10 41 69 100 130 161 191 222 253 283 314 344
11 11 42 70 101 131 162 192 223 254 284 315 345
12 12 43 71 102 132 163 193 224 255 285 316 346
13 13 44 72 103 133 164 194 225 256 286 317 347
14 14 45 73 104 134 165 195 226 257 285 318 348
15 15 46 74 105 135 166 196 227 258 288 319 349
16 16 47 75 106 136 167 197 228 259 289 320 350
17 17 48 76 107 137 168 198 229 260 290 321 351
18 18 49 77 108 138 169 199 230 261 291 322 352
19 19 50 78 109 139 170 200 231 262 292 323 353
20 20 51 79 110 140 171 201 232 263 293 324 354
21 21 52 80 1 141 172 202 233 264 294 325 355
22 22 53 81 112 142 173 203 234 265 295 326 356
23 23 54 82 113 143 174 204 235 266 296 327 357
24 24 55 83 114 144 175 205 236 267 297 328 358
25 25 56 84 115 145 176 206 237 268 298 329 359
26 26 57 85 116 146 177 207 238 269 299 330 360
27 27 58 86 117 147 178 208 239 270 300 331 361
28 28 59 87 118 148 179 209 240 271 301 332 362
29 29 * 88 119 149 180 210 241 272 302 333 363
30 30 89 120 150 181 211 242 273 303 334 364
31 31 90 151 212 243 304 365

*In leap years, after February 28, add 1 to the tabulated value.
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has been increased by 1 because 1948 was a leap year and the date fell after
February 28.

Second Example: February 9, A.p. 1584 (Gregorian calendar), 10:30 A.M. Green-
wich mean time:

L 1500' (Gregorian) 226 8923
2. 84 3 0681 —1= 3 0680
3. February 9 40
Julian day number 229 9643

1 1/2 hours before noon of the gth: 2,299,642%22"30"

Note that although 1584 was a leap year, the tabular value in step 3 is not
changed because the date fell before the end of February.

Dates before the Beginning of the Christian Era  Express the date astronomi-
cally; add the smallest multiple (#) of 1,000 years that will convert the date
into an A.p, date; determine the Julian day number of the a.p. date; then
subtract the same multiple (n) of 365250. The result is the Julian day number

desired.
Example: March 12, 3284 B.c. Greenwich mean noon:

March 12, B.C. 3284 =— 3283 March 12

4 X 1000 = 4000

sum= 717 March 12

1. 700 197 6732
2. 17 6210
3. March 12 71
Julian day number, March 12, A.D. 717 noon 198 3013
Less 4 X 365250 —146 1000
Julian day number, March 12, B.C. 3284, noon 52 2013

4.4 EXERCISE: USING JULIAN DAY NUMBERS

1. Work out the Julian day numbers for the following dates. The time is
Greenwich noon unless otherwise noted.

A. June 13, 1952 {answer: 243 4177).
B. June 10, 323 B.C. (death of Alexander).
C. November 12, 1594, 6 aA.M. Greenwich (Gregorian calendar).

2. Days of the week: The Julian day number provides a handy method of
determining the day of the week on which any calendar date falls.
Divide the Julian day number by 7, discard the quotient, but retain the
remainder. The remainder determines the day of the week:

Remainder ~ Day of week

0 Monday

1 Tuesday

2 Wednesday
3 Thursday

4 Friday

5 Saturday

6 Sunday
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A. Columbus, on his first voyage of discovery, first sighted land on
October 12, 1492. What day of the week was this? (Answer: Friday.)
B. July 4, 1776 (Gregorian) fell on what day of the week?

3. Length of the tropical year: The vernal equinox of 1973 fell on March
20 at 6 p.m. Greenwich time. Copernicus observed the vernal equinox
of the year 1516, “4 1/3 hours after midnight on the sth day before the
Ides of March” That is, the vernal equinox fell at 4:20 A.M. March 11,
A.D. 1516. (Is this the Julian or the Gregorian calendar?) Copernicus’s
time of day is referred to his own locality, that is, to the meridian
through Frauenberg, on the Baltic coast of Poland. Frauenberg lies about
19° east of Greenwich, which amounts to about 1 1/4 hour of time.
Expressed in terms of Greenwich time, then, Copernicus’s vernal equinox
fell at about 3 A.mM. (We ignore the small fraction of an hour.)

Use these two equinoxes (1516 and 1973) to determine the length of
the tropical year. To do this, compute the Julian day number of each
observation, subtract to find the time elapsed, then divide by the number
of years that passed. Compare your result with the modern figure for
the tropical year, 365.2422 days.

4.5 THE EGYPTIAN CALENDAR

An understanding of the ancient Egyptian calendar is essential for every student
of the history of astronomy. Because of its great regularity, the Egyptian
calendar was adopted by Ptolemy as the most convenient for astronomical
work, and it continued to be used by astronomers of all nations down to the
beginning of the modern age. In the sixteenth century, Copernicus, for exam-
ple, constructed his tables for the motion of the planets, not on the basis of
the Julian year, but on the basis of the Egyptian year. When Copernicus
wanted to calculate the time elapsed between one of Prolemy’s observations
and one of his own, he converted his own Julian calendar date into a date in
the Egyptian calendar.”

Structure

The Egyptian calendar from a very early date consisted of a year of twelve
months, of thirty days each, followed by five additional days. The length of
the year was therefore 365 days. Every year was the same: there were no leap
years or intercalations. The names of the months are

1. Thoth 7. Phamenoth
2. Phaophi 8. Pharmuthi
3. Athyr 9. Pachon

4, Choiak 10. Payni

5. Tybi 11. Epiphi

6. Mecheir 12. Mesore
Plus 5 additional days.

The names transcribed here, as commonly written by scholars today, repre-
sent their Greek forms. (Greeks of the Hellenistic period, living in Egypt,
spelled the old Egyptian month names as well as they could in the Greek
alphabet.) The additional days at the end of the year are sometimes called
“epagomenal”: the Greeks called them epagomenai, “added on.”

The Egyptian year, being only 365 days, will after an interval of four years
begin about one day too early with respect to the solar year. As a result, the
Egyptian months retrogress through the seasons, making a complete cycle in
about 1460 years (1461 Egyptian years = 1460 Julian years).” It therefore came
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about that religious festivals once celebrated in winter (on fixed calendar dares)
fell in the summer. In 238 B.c., Prolemaios III attempted to correct this
supposed defect of the calendar by a plan that would insert one extra epago-
menal day every four years. The reform was unsuccesstul, as both the religious
leaders and the populace insisted on reraining the old system.

The Astronomical Canon

The ordinary way of expressing the year in Egypt, as almost everywhere in
the ancient world, was in terms of the regnal years of kings. Thus, a reliable
king list is the first requirement of an accurate chronology. The astronomical
canon is a king list that was used by the Alexandrian astronomers as the basis
of their chronology. The canon is preserved in manuscript copies of Theon
of Alexandria’s redaction of Prolemy’s Handy Tables* In some manuscripts,
the list is titled kanon basileion, “Table of Reigns,” and begins as follows:

Sums
Years of the reigns before of these
Alexander, and of bis reign Years years
Nabonassar 14 14
Nadios 2 16
Chinzer and Poros 5 21
Tlouaios 5 26
Mardokempad 12 38
Nabonadios 17 209

These were kings of Babylonia in the eighth century B.c. The most ancient
records of Babylonian astronomical observations that were available to the
Alexandrian astronomers went back no farther that this. For example, the
oldest observations cited by Ptolemy in the Almagest are three lunar eclipses
that occurred during the reign of Mardokempad, in the years corresponding
to 721720 B.C. Thus, the Greek astronomers’ king list went back just as far
as was likely to be useful, and no farther.

The first column of numbers represents the lengths of the reigns of the
individual kings. Nabonassar reigned 14 years; Nadios, only two. The second
column gives the running total of all of the foregoing reigns. The 26 opposite
llouaios signifies that his reign plus all those that went before, back to the
time of Nabonassar, totaled 26 years. These cumulative totals are useful if
one wishes to refer events in several different reigns to the same standard
epoch, say, the beginning of the reign of Nabonassar. The first year of the
reign of Mardokempad, for example, is also designated the 27th year of
Nabonassar.

The years of the reigns are Egyptian years of 365 days, the year adopted
by the Alexandrian astronomers for purposes of calculation. The lengths of
the reigns therefore do not directly represent information recorded by the
ancient Babylonians themselves, for the Babylonians used a luni-solar year of
variable length. Rather, the lengths of the reigns given in the astronomical
canon are the result of a translation and recalculation of the Babylonian data
performed by the Greek astronomers for their own purposes. The list is also
somewhat conventionalized. All regnal years are considered to begin with the
1st of Thoth, that is, the beginning of the Egyptian calendar year. Of course,
kings do not generally begin their reigns on the 1st of Thoth. But, as a matter
of convention, the whole Egyptian year that includes a king’s assumption of
power is counted as the first year of his reign. Kings who reigned less than a
year are not included in the list.

Finally, the names of the Babylonian kings as given in the canon are Greek
versions that are not very faithful to the Babylonian originals. More accurate
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transcriptions, based on Babylonian archives, are: Nabonassar, Nabunadinzri,
Ukinzir and Pulu, Ulula, Mardukbaliddin, . . . Nabonidus.”

The list of Babylonian kings ends with Nabonadios, whose reign ended
in the 209th year of Nabonassar (538 B.c.). The canon then continues with
the Persian kings, the last of whom is Alexander. The astronomical canon
thus reflects the political and military history of the Middle East: the Persians
conquered Babylonia and were themselves eventually conquered by the Mace-
donians.

Persian kings

Kyros (Cyrus the Great) 9 218
Kambysos 8 226
Dareios the First (Darius) 26 262
Dareios the Third 4 416
Alexander the Macedonian 8 424

Here the list is interrupted by a new major heading:

Years of the Macedonian Kings
after the Death of Alexander

Philippos 7 431 7
The other Alexander 12 443 19
Dionysios the Younger 28 696 272
Cleopatra 22 718 294

Again, the first column gives the lengths of the individual reigns. The
second continues the cumulative total since the era Nabonassar, without a
break. The third column, which is new, begins a new cumulative total reckoned
from the beginning of the reign of Philippos. Thus, the 22nd (and last) year
of the reign of Cleopatra may also be called the 718th year of Nabonassar or
the 294th year of Philippos. These years of Philippos are more often called
years since the death of Alexander. For example, the last year of Cleopatra’s
reign was the 294th year after the death of Alexander. In many manuscripts
the middle column of figures is not given. This reflects the widespread use
of the era Alexander in Greek chronology.

After Cleopatra, counted as the last of the Macedonian monarchs, the
canon takes up the Romans without a break:

Roman kings

Augustus 43 761 337
Tiberius 22 783 359
Trajan 19 863 439
Hadrian 21 884 460
Aelius-Antoninus 23 907 483

Each scribe generally continued the list down to his own time. In some
manuscripts, the list is continued to the fall of Constantinople (a.D. 1453).
We shall not need any of the Romans after Hadrian and Antoninus, whose
reigns span the period of Ptolemy’s astronomical work.

Calculation of Time Intervals

As an example of the use of the Egyptian calendar and the astronomical canon,
we shall work out the number of days that passed between two eclipses of
the moon that were used by Ptolemy in Almagest IV, 7, to determine the
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TABLE 4.5. Some Important Egyptian/Julian Equivalents

1 Thoth, Year 1 of Nabonassar 26 February, 747 B.C.
1 Thoth, Year 1 of Philippos’ 12 November, 324 B.C.
1 Thoth, Year 1 of Hadrian 25 July, A.D. 116

1 Thoth, Year 1 of Antoninus 20 July, A.D. 137

*Also known as the first year since the death of Alexander.

Moon’s mean motion in longitude. The date of the first eclipse is given by
Prolemy as year 2 of Mardokempad, Thoth 18. The date of the second is year
19 of Hadrian, Choiak 2. (For simplicity, we ignore in each case the hour of
the day.) The problem is to find the number of days separating these two
events.

Going to the astronomical canon, we find that year 2 of Mardokempad =
year 28 of Nabonassar. (llouaios’s reign ended with the end of the 26th year
of Nabonassar.) Similarly, year 19 of Hadrian = year 882 of Nabonassar. Now
both years have been expressed in terms of a single standard era.

Since Thoth is the first month, Thoth 18 is the 18th day of the year. Choiak
is the fourth month: three complete months, totaling 9o days, elapse before
the beginning of Choiak. Therefore, Choiak 2 is the 92nd day of the year.

The time elapsed between the two lunar eclipses may now be computed:

882 years of Nabonassar, 92 days (19 Hadrian, Choiak 2)
—28 years of Nabonassar, 18 days (2 Mardokempad, Thoth 18)

854 years, 74 days

The years are, of course, Egyptian years of 365 days, so the number of days
elapsed is

854 X 365 + 74 = 311,784 days,

which agrees with the answer obtained by Prolemy.

Expressed in terms of the Julian calendar, the dates of the two eclipses are
March 8, 720 B.C., and Ocrtober 20, A.D. 134. The calculation of the number
of days elapsed directly from these Julian calendar dates would be a great deal
more troublesome. There are three sources of trouble in such a calculation:
the absence of a zero year at the transition between B.C. and A.D., the fact
that the Julian months are not all the same length, and the necessity of
counting the exact number of leap days involved.

Conversion of Dates between the Egyptian
and Julian Calendars

Tables 4.5 and 4.6 provide all the information needed for converting most of
the Egyptian calendar dates mentioned by Prolemy in the Almagest. Table 4.5

TABLE 4.6. Months and Days of the Egyptian Year

Months Days Total Days Months Days Total Days
Thoth 30 30 Phamenoth 30 210
Phaophi 30 60 Pharmuthi 30 240
Athyr 30 90 Pachon 30 270
Choiak 30 120 Payni 30 300
Tybi 30 150 Epiphi 30 330
Mecheir 30 180 Mesore 30 360
Epagomenai 5 365
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provides the Julian equivalents of a number of important dates in the astronom-
ical canon. Table 4.6 gives the number of days elapsed at the end of each
month of the Egyptian year.

Example In Almagest X, 1, Ptolemy discusses a position measurement of
Venus with respect to the Pleiades made by a certain Theon who was Prolemy’s
elder contemporary. Prolemy records the time of this observation as

In the 16th year of Hadrian,
in the evening between the 21st and 22nd of Pharmouthi.

We want to express this date in terms of the Julian calendar. According
to Table 4.5,
1 Thoth, Hadrian 1 = 25 July, a.p. 6.
Starting from this date, we reckon forward to the date of Theon’s observation
of Venus:

From 1 Thoth, Hadrian 1 20 1 Thoth, Hadrian 16 is 15 Egyptian years.
From 1 Thoth # 1 Pharmouthi is 210 days.
From 1 Pharmouthi to 21 Pharmouthi is 20 days.

The elapsed time is therefore 15 Egyptian years, 230 days.

Now we break the 15 Egyptian years up into multiples of 4, plus a remainder.
That is, we write 15 = 12 + 3 (since 12 = 3 X 4). The 12 Egyptian years are all
365 days long. However, in the Julian calendar, one year of every four contains
a leap day. Therefore, 12 Egyptian years are shorter than 12 Julian years by 3
days:

I2 EY. = I2 J.Y. — 3 days
The elapsed time may therefore be written as

15 E.Y. + 230d= 12 EY. + 3 EY. + 230“’
= (12 1.v. —3% + 3 E.Y. + 2307

=12 Y. + 227" + 3 BV

This time interval is to be added to the Julian calendar date for the
beginning of the first year of Hadrian:

116 A.D., July2s
+ gy +227 +3 EY.

129 A.D., Marchg +3 &Y.

Note that the addition of 227 days to July 25 carried us forward into the
next calendar year (129 a.p.). The only remaining problem is to dispose of
the 3 Egyptian years. These may or may not be equivalent to 3 Julian calendar
years. We will have to examine whether the addition of these 3 years causes
us to roll over a leap day. The three additional Egyptian years will bring us
to March, 132 A.p. That is, we will pass through the end of February, 132,
when a leap day should be inserted. As the 3 Egyptian years do not contain
this leap day, we will come up one day short. The final date is therefore

AD. 132, in the evening of March 8.

The Alexandrian Calendar

As mentioned earlier, Prolemaios III Euergetes attempted in 238 8.C. to reform
the Egyptian calendar by inserting a leap day once every four years, but the
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new arrangement was not accepted by his subjects. However, the same reform
was reintroduced more successfully by Augustus some two centuries later,
after Egypt had passed under Roman control. A sixth epagomenal day was
inserted at the end of the Egyptian year 23/22 B.c., and every fourth year
thereafter. The modified calendar, now usually called the Alexandrian calendar,
is neatly equivalent to the Julian calendar: every four-year interval contains
three common years of 365 days and one leap year of 366 days. As a result,
the two calendars are locked in step with one another. For example, the
Alexandrian month of Thoth always begins in the Julian month of August.

More precisely, the first day of Thoth in the Alexandrian calendar falls
either on August 29 or August 30 of the Julian calendar, depending on the
position of the year in the four-year leap day cycle. Figure 4.1 illustrates the
relation of the two calendars. The leap years in each sequence are marked
with asterisks. (The numbers o, 1, 2 ... written above the Julian calendar
years indicate the positions of those years within the leap-year cycle. These
numbers are the remainders that would be left if the year were divided by 4.
The Julian leap years are those with remainder zero, i.c., evenly divisible by
4.) The dates written at the left and right edges of the boxes indicate the first
and last days of each year. Finally, the figure indicates the Julian calendar day
on which each Alexandrian year begins. Thus, Thoth 1 falls on August 30 if
the August in question belongs to the Julian year preceding a leap year.
Otherwise, Thoth 1 falls on August 29. Once the Julian equivalent of Thoth
1 is known, all the other days of the Alexandrian year fall into place.

The Alexandrian calendar was not uniformly and immediately accepted in
Egypt. Rather, the old and the new calendar (referred to as the “Egyptian”
and “Alexandrian” calendars, respectively) continued to be used side by side.
The month names are the same in both calendars, so it is not always possible
to-decide which calendar is being used in a particular ancient document,
unless there is either an explicit mention or a connection to some event that
can be dated independently. Since the two calendars diverge rapidly, at the
rate of one day every four years, it is usually easy to tell which calendar is
being used in an astronomical text. The astronomers tended to prefer the old
one because of its greater simplicity. Prolemy, for example, used the Egyptian
calendar exclusively in the A/magest, even though he composed it more than
a century after the introduction of the new calendar.

In one of his works, however, Prolemy did adopt the Alexandrian calendar.
This was his Phaseis, which contained a parapegma, or star calendar, listing
the day-by-day appearances and disappearances of the fixed stars in the course
of the annual cycle (see sec. 4.11). For example, in the Phaseis, Prolemy writes
that the winrer solstice occurs on the 26th of Choiak and that, for the latitude
of Egypt, o Centauri “emerges” on the 6th of Choiak. (Le., the star first
becomes visible on this date as the Sun moves away from it.) It would make
less sense to compose an astronomical calendar in terms of the Egyptian
calendar. Neither the winter solstice nor the emergences and disappearances
of the fixed stars would take place on fixed dates, since all these events advance
through the months of the Egyptian calendar at the rate of one day every
four years. But, in terms of the Alexandrian calendar, these annual astronomical
events really do occur on about the same date every year. The winter solstice,
for example, fell every year on the 26th of Choiak in the Alexandrian calen-

Direction of Time
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dar—at least for a century or so. (Over periods of many centuries, of course,
the Alexandrian calendar suffers from the same defect as the Julian, namely
that the solar year is not quite exactly 365 1/4 days, the adopted length of the
mean calendar year.)

One must exercise care when expressing dates in terms of Egyptian month
names: it is important to state clearly whether the Egyptian or the Alexandrian
calendar is meant, since the month names are the same in both. The situation
is analagous to the use of identical month names for the Julian and the
Gregorian calendars. In the present text, all dates using Egyptian month
names are expressed in terms of the Egyptian calendar, unless explicitly stated
otherwise.

Historical Specimen

Figure 4.2 is a photograph of the beginning of the table of reigns found in a
Greek manuscript of the Handy Tables. There are two more pages to the king
list, not reproduced here. The manuscript, now in the Bibliothé¢que Nationale
in Paris, is carefully, though not elegantly, written in black ink. The ruled
lines were drawn in red. Found in the same bound volume, or codex, are
other astronomical works, including the Treatise on the Astrolabe of John
Philoponos. The manuscript was written in the thirteen or fourteen century.
The first king listed in the photograph is Nabonassar, the last is Alexander
the Macedonian. The name Xerxes can be seen eighth from the bottom.” To
translate the numbers, the reader need only know that the Greeks used the
letters of their alphabet as numerals,” with the following correspondences:

o 1 v 10 p 100
B 2 k 20 c 200
y 3 A 30 t 300
& 4 p 40 v 400
€ 5 v 50 ¢ 500
c 6 g 60 x 600
& 7 o 70 y 700
n 8 n 80 o 800
0 9 R 90 2 900

46 EXERCISE: USING THE EGYPTIAN CALENDAR

1. Computing a time interval in the Egyptian calendar: In Abmagest X1, 3,
devoted to the determination of Jupiter’s mean speeds (of the planet
on the epicycle and of the epicycle around the deferent), Prolemy makes
use of an ancient observation and an observation of his own. According
to the ancient observation, Jupiter occulted the Southern Ass (8§ Cancri)
on Epiphi 18 in the 83rd year after the death of Alexander. The second
observation, made by Ptolemy himself, involved an opposition of Jupiter
to the mean Sun. The date was Athyr 21, in the 1st year of Antoninus.

Compute the exact number of days between these two observations.
(Hint: First express the second date in terms of the era Alexander. Find
in the extract from the astronomical canon that Hadrian’s reign ended
with the 460th year of Alexander, and that Antoninus’s therefore began
with the 461st.) (Final answer: 377 Egyptian years, 128 days = 137,733
days.)

2. Another time interval problem: Similarly, in Almagest X1, 7, Prolemy
makes use of an old and a recent observation to determine the rates of
motion associated with Saturn. In year 519 of Nabonassar, on Tybi 14,
Saturn was seen two digits below the Virgin’s southern shoulder (y
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FIGURE 4.2. The beginning of the

astronomical canon, from a manuscript of the
Handy Tables that dates from about a.p. 1300.
Bibliothéque Nationale, Paris (MS. Grec 2497,

fol. 74).
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Virginis). The recent observation, made by Ptolemy himself, involved
an opposition of Saturn to the mean Sun. The date (as given in Almagest
X1, 5) was Mesore 24, in the 20th year of Hadrian. Compute the number

of days between these two observations.

3. Conversion of dates, Egyptian to Julian: Prolemy records the time of
the middle of a partial lunar eclipse, which he observed at Alexandria,
as follows: in year 20 of Hadrian, four equinoctial hours after midnight
on the night between the 19th and 20th of Pharmouthi (Egyptian
calendar). Convert this date into its equivalent in the Julian calendar.

(Answer: March 6, A.D. 136, 4 A.M., Alexandria local time.)

4. Another conversion problem: In Almagest IV, 9, Ptolemy reports the
beginning of a partial eclipse observed by him: in the gth year of Hadrian,
in the evening between the 17th and 18th of Pachon, 3 3/5 equinoctial
hours before midnight. Express this date in terms of its Julian equivalent.

4.7 LUNI-SOLAR CALENDARS AND CYCLES

All luni-solar calendars contain two features. First, the months alternate be-
tween 29 and 30 days long. In this way, the calendar months closely match
the synodic month (the time from new Moon to new Moon). (But because
the synodic month is a little longer than 29 1/2 days, there must be a few
more 30-day months than 29-day months.) Second, the calendar year contains
sometimes twelve months and sometimes thirteen. Twelve synodic months
amount to 354 days, which is shorter than the tropical year (365 1/4 days).
Thus, if every calendar year had only twelve months, the calendar would
progressively get out of step with the seasons. The occasional insertion of a
thirteenth month restores the calendar to its desired relation to the seasons.
In a well-regulated luni-solar calendar, the calendar months slosh back and
forth a bit with respect to the seasons, but they do not continually gain or
lose ground. For example, in the Jewish calendar, the month of Nisan comes
always in the spring, but it does not always begin on the same date of the

Gregorian calendar.

The Greek Civil Calendars

The Months of four Greek calendars®

Athens Delos

1. Hekatombaion =~ Hekatombaion
Metageitnion Metageitnion
Boedromion Bouphonion
Pyanepsion Apatourion
Maimakterion Aresion
Poseideon™ Poseideon
Gamelion 1. Lenaion
Anthesterion Hieros
Elaphebolion Galaxion
Mounychion Artemision
Thargelion Thargelion
Skirophorion Panamos*

In the calendars of ancient Greece, the month began with the new Moon.
Generally, months of 30 days, called “full” (pleres), alternated with months
of 29 days, called “hollow” (koilo:). Ordinarily, the civil year consisted of

Thessaly
Phyllikos

1. ltonios
Panemos
Themistios
Agagylios
Hermaios
Apollonjos*
Leschanopios
Apbhrios
Thuios
Homoloios
Hippodromios

Boeotia

Hippodromios
Panamos
Pamboiotios
Damatrios
Alalkomenios*
1. Boukatios
Hermaios
Prostaterios
Agrionios
Thiouios
Homoloios

Theilouthios

twelve months, but occasionally a thirteenth month was intercalated.

Despite the simplicity of the basic calendrical scheme, Greek chronology
is a difficult, even obscure, field. Most cities had their own calendars, which



CALENDARS AND TIME RECKONING

differed in the names of the months, the starting point of the year, and the
place in the calendar where intercalary months were inserted. The list above
gives the names of the months in four Greek calendars, starting from summer
solstice. The first month of the year is marked 1. In the Athenian calendar,
the year began with Hekatombaion, around the time of summer solstice. But
in Delos the year began with Lenaion, around winter solstice. The months
that were customarily doubled in leap years are marked with asterisks. For
many cities, for example, for Argos and Sparta, the complete list of month
names is not even known.

The most vexing complication is not, however, that each city followed its
own practice, but that even in a single city the practice was not uniform. No
regular pattern determined the intercalation of months. Moreover, individual
days were sometimes intercalated or suppressed at will. For example, the
Athenians held a theatrical presentation in connection with the cult of Dio-
nysos on Elaphebolion 10. In 270 B.c., for some reason, the performance was
postponed. Accordingly, the day following Elaphebolion 9 was counted as
Elaphebolion 9 embolimos (“inserted”), and the next three days were counted
as the second, third, and fourth “inserted” Elaphebolian 9.” Religious practice
did not permit tampering with the names of days on which feasts were held,
but the archons were free to intercalate days as needed, to place the feasts at
a more convenient time. In a famous passage of The Clouds (lines 615—626),
Aristophanes ridicules Athenian calendrical practice. The Moon complains
that although she renders the Athenians many benefits—saving them a drachma
each month in lighting costs through moonlight—nevertheless they do not
reckon the days correctly, but jumble them all around. Consequently, the
gods threaten her whenever they are cheated of their dinner because the
sacrifices have not been held on the right days. As Samuel® points out, this
illustrates that the festival calendar was out of step with the Moon, and thas
the Athenians were aware of it. Consequently, it is not surprising to see Athenian
writers distinguish between “the new Moon according to the goddess” (Selene,
the Moon) and “the new Moon according to the archon” (the head magistrate
of the city).”’ We might call these the actual new Moon and the calendrical
new Moon.

Because no fixed system was used to regulate the intercalation of either
months or days, it is usually impossible to convert a date given in terms of
the 